C2M是一种新型的工业互联网电子商务的商业模式,又被称为“短路经济”,目前C2M正逐渐被各大电商企业运用, 成为下一阶段的互联网发展新趋势和新方向。
C2M不仅仅是电商的事情,其关系到生产、制造到销售整个产业链。中国是制造业大国,对于大多数制造业而言,产品同质化严重,整体利润率较低是普遍的问题,C2M的出现可以直接面向客户和市场需求,帮助制造业提高客户粘性,简化中间环节。Forrester首席分析师穆飞表示,C2M对于制造水平要求很高,如何能够在小批量多品类制造场景下控制成本和品质,更多需要智能制造的支撑。
Forrester首席分析师穆飞
C2M的发展对于市场也有着非常积极的作用。Forrester认为,企业应该实现洞察驱动(insight-driven)才能实现市场适应性(market adaptiveness),从而获得高速增长。C2M可以帮助企业更快的获得客户需求以及市场洞察,是客户时代(age of customer)的必然趋势。
电商平台积极入局C2M
目前C2M上属早期发展阶段,渗透率并不算高,但是可以看到市场前景广阔。目前各主要电商平台都在积极布局C2M生态,而且疫情也进一步推动了电子商务的渗透率,对C2M也带来了间接推动作用。
2013年底,阿里旗下1688基于C2M理念推出“淘工厂”项目。2019年底,阿里巴巴在淘宝事业群下专门成立C2M事业群。2020淘宝C2M战略发布会上,阿里推出了一款以C2M商品为核心供给的淘宝特价APP。同时公布了“超级工厂计划”、“百亿产区计划”和“双百目标”三大C2M战略支柱。
2018年12月12日,拼多多推出“新品牌计划”,称将以C2M模式帮助1000家工厂打造爆品。截至2019年底,新品牌计划正式成员已达106家,超过900家包括知名品牌在内的企业参与了C2M定制化生产,累计推出超过2200款定制化产品,订单量超过1.15亿单。
2019年5月,京东联手新华社发布了“厂直优品”计划,在全国10万家制造型企业和消费者之间搭建高效的零售体系,当时京喜的前身京东拼购是京东“厂直优品”的重要承载平台。2020年4月20日,京东旗下的“京喜”宣布将全新推出京喜产业带厂直优品计划。
淘宝、拼多多、京东等电商平台都已经选择了C2M,好处可以说显而易见,其缩短了从生产源头到消费者的步骤,就意味着成本的减少。
C2M带来价值链的重新布局
由于C2M涉及的范围很广,所以当下流行的技术基本都会涉及,尤其是对柔性制造以及品控技术挑战很大。
现在C2M主要参与和发起者还更多是电商平台,穆飞认为,电商平台拥有强大的客群,在前端拥有需求收集渠道,在后端通过自有工厂或者ODM/OEM整合实现生产,整体会倒逼制造端的智能化升级。
随着直播和短视频行业的发展,电商也孕育出了直播电商的新型模式。穆飞表示,目前直播带货还是主要通过更为有效的渠道解决库存问题,当然也可以通过市场洞察反哺设计制造,但目前效果并不明显。
C2M希望更进一步实现以销定产,将市场洞察、客户需求与生产制造更为紧密的联系起来。从目前看来,由于时间尚短,失败或者成功案例都言之过早。但是身处产业链中,生产商应该积极主动拥抱这一模式,用多元化战略应对不确定性。渠道销售也需要调整策略,寻找自身的独有价值,才能够应对C2M的冲击。
未来,对于适合C2M的产品领域将会带来价值链的重新布局,比如电商平台、工业互联网平台将成为新的渠道体系等。同时C2M会进一步为消费市场带来不确定性,不积极应对变化将会陷入被动的境地。面对日益严峻的挑战,企业需要从市场、技术、组织三个层面入手不断加强自身的适应能力。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。