在中国,对技术的投资正以前所未有的速度增长,政府对新一代人工智能(AI)发展计划的承诺也十分明确,因此培养生成式AI技能已成为基础设施和运营(I&O)部门的当务之急。此外,2025年Gartner首席信息官(CIO)和技术高管调研显示,平均来说,中国企业计划在2025年将其对生成式 AI和AI领域的技术投资分别提高40.3%和33.3%。
利用Gartner 的TOPICS技能图谱识别现有的生成式Al技能差距
为了让中国I&O团队具备与生成式AI相关的技能,从而在AI旅程中取得成功,基础设施和IT 运营领导者必须确定生成式AI应用与I&O核心职能(如AI基础设施管理、网络管理、服务器维护、云运营和故障排除)相符的角色和关键I&O使用场景。同时,还必须考虑到本地的技术生态系统和监管合规要求。在生成式AI环境中,I&O领导者需要能够:评估AI生成的输出,识别错误和不一致之处。使用AI创建洞察并改进流程。利用AI组织、创建甚至订制新内容。发现幻觉、偏见和政策违规。随后,应将这些定义的生成式AI用例与关键I&O任务挂钩,以明确技能优先级。
利用Gartner的TOPICS模型,对生成式AI方案进行评估,并优先考虑那些对于在I&O中有效使用和支持生成式AI最为关键的技能(见图1)。

图1:Gartner的TOPICS生成式AI技能开发框架
使用沉浸式和体验式学习方法,加速开发生成式AI技能
沉浸式和体验式学习方法将生成式AI应用嵌入到真实世界的工作场景中,弥合了理论和实践之间的技能差距,从而加快了学习速度,提高了生产力。中国独特的市场动态,包括强劲的制造业、大规模的数字化转型计划,以及政府和私营部门对AI技术的大量投资,突显出创新培训方法的必要性。当学习与亲身实践和深度社交互动结合在一起时,可以显著缩短获取和应用知识来解决业务问题的时间延迟。
培养生成式AI学习的文化,推动持续提高技能
利用领先技术和提供沉浸式功能本身并不能确保I&O部门具备必要的生成式AI技能。I&O领导者必须营造一种学习文化,通过激励机制和构建的有利环境,促进生成式AI技能的不断发展。
好文章,需要你的鼓励
新加坡电信启动50Gbps光纤宽带技术试点,成为新加坡首家测试该技术的运营商。该试点基于10Gbps对称无源光网络技术,旨在为未来3至5年内主流的带宽密集型应用提供基础设施支持。随着人工智能、混合现实和高保真云计算的普及,网络吞吐量和延迟性能需求将大幅提升。该举措符合新加坡数字连接蓝图规划,将支持远程办公、医疗影像传输和VR理疗等应用场景。
瑞士ETH苏黎世联邦理工学院等机构联合开发的WUSH技术,首次从数学理论层面推导出AI大模型量化压缩的最优解。该技术能根据数据特征自适应调整压缩策略,相比传统方法减少60-70%的压缩损失,实现接近零损失的模型压缩,为大模型在普通设备上的高效部署开辟了新路径。
先锋在CES 2026上发布新款Sphera车载后装接收器,首次将杜比全景声和空间音频功能引入普通汽车。该产品采用10.1英寸高清触控屏,通过"Pure Autotuning"技术优化4声道方案,充分利用现有前后扬声器。此前这些高端音频功能仅在少数特定车型中提供。Sphera售价1300美元起,将于2026年春季上市,为希望升级CarPlay的用户提供优质解决方案。
弗吉尼亚大学团队创建了Refer360数据集,这是首个大规模记录真实环境中人机多模态交互的数据库,涵盖室内外场景,包含1400万交互样本。同时开发的MuRes智能模块能让机器人像人类一样理解语言、手势和眼神的组合信息,显著提升了现有AI模型的理解准确度,为未来智能机器人的广泛应用奠定了重要基础。