Gartner预测到2027年末,超过40%的代理型AI项目将因成本不断攀升、商业价值不明确或风险控制不足而被取消。
Gartner高级研究总监Anushree Verma表示:“目前大多数代理型AI项目仍处于早期实验或概念验证阶段,这些项目大多受炒作驱动且常被误用。这可能使企业忽视大规模部署AI智能体的实际成本与复杂性,从而导致项目无法进入生产阶段。因此,企业应避免轻信此类炒作并就如何使用这项新兴技术做出谨慎的战略决策。”
Gartner于2025年1月对3412名网络研讨会参与者进行了调研,19%的受访者表示其企业已大力投资于代理型AI,42%进行了保守投资,8%未进行投资,剩余31%持观望态度或尚不确定。
许多供应商正在通过参与“代理洗白”助长这一炒作。“代理洗白”指的是将AI助手、机器人流程自动化(RPA)和聊天机器人等现有产品重新包装成代理型AI,而这些产品不具备实质性的代理能力。Gartner估计在上千家代理型AI供应商中,只有约130家是真正的代理型AI供应商。”
Verma表示:“由于现有模型不具备持续自主实现复杂业务目标或遵循详细指令的成熟度和自主性,因此,目前大多数代理型AI方案无法产生显著的价值或投资回报(ROI)。而且现在许多所谓的代理型AI用例实际上并不需要代理型AI。”
挖掘代理型AI的商业价值
尽管存在这些早期问题,代理型AI趋势依然代表着AI技术和市场的一次重大飞跃。代理型AI的能力超过基于脚本的自动化机器人和虚拟助手,它将带来提高资源效率、实现复杂任务自动化和推动商业创新的新途径。
Gartner预测到2028年,通过代理型AI自主作出的日常工作决策比例将从2024年的0%提高至15%以上,包含代理型AI的企业软件应用比例将从2024年的不足1%提高至33%。
在早期阶段,Gartner建议企业仅在能够带来明确价值或投资回报(ROI)的情况下才使用代理型AI。因为在将代理集成到现有系统的过程中,企业会面临复杂的技术难题、经常需要打乱工作流程并付出高昂的修改成本。在许多情况下,最明智的办法是重新设计一套基于代理型AI的工作流程。
Verma表示:“要挖掘出代理型AI的真正价值,企业必须专注于整体生产力,而非只提升个别任务的效率。企业可以开始将AI智能体用于决策、常规工作流程的自动化、辅助简单的信息检索等,通过降低成本,提高质量、加快速度和实现规模化并从中获得商业价值。
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。