Gartner一项新调查显示,45%具备高人工智能(AI)成熟度企业的领导者表示,其AI项目已持续运转三年以上,以确保长期产生影响和价值。而在AI成熟度较低的企业中,这一比例仅为20%。
调查显示,高AI成熟度企业确保AI项目长期运行的关键是基于业务价值和技术可行性选择AI项目,并建立健全的治理结构和工程实践。
该调查于2024年第四季度进行,目的是了解企业如何使用AI和生成式人工智能(GenAI)。来自美国、英国、法国、德国、印度和日本的432名受访者参与了此次调查。调查通过七个问题对企业的AI使用能力进行评估,这七个问题是Gartner基于评估和提升企业AI使用能力的结构化框架——Gartner AI成熟度模型所设计。每个方面按照1分(“规划/初始”)至5分(“领先”)进行评分。高AI成熟度企业的平均得分为4.2至4.5分,而低AI成熟度企业的平均得分为1.6至2.2分。
Gartner高级研究总监Birgi Tamersoy表示:“信任是决定AI或GenAI项目成败的关键因素之一。”
调查发现,57%的高AI成熟度企业业务部门信任并准备使用新AI解决方案,而低AI成熟度企业的这一比例仅为14%。Tamersoy表示:“建立对AI和GenAI解决方案的信任是推动使用的关键,而使用是创造价值的第一步,对成功具有显著影响。”
数据可用性和质量仍是AI落地的主要挑战
无论AI成熟度如何,数据的可用性与质量始终是AI实施过程中面临的关键难题。Gartner数据显示,34%的低成熟度企业领导者和29%的高成熟度企业领导者均将其列为实施AI的主要挑战之一(见图1)。在AI成熟度较高的企业中,48%的领导者认为安全威胁是实施AI的三大障碍之一;而在成熟度较低的组织中,有37%的领导者表示缺乏合适的应用场景是其面临的最大障碍。
图一、AI实施面临的主要障碍
来源:Gartner(2025年6月)
通过建立指标实现最佳AI使用效果
调查还显示,建立指标有助于提升AI使用效果。高AI成熟度企业通过定期量化AI项目效益并利用多维度指标评估项目成功程度,因此不断改进AI项目。调查发现,63%的高AI成熟度企业领导者会对风险因素进行财务分析、对投资回报(ROI)和客户影响进行分析与评估,这些举措都能帮助她们保持AI项目的成功。
任命专门的AI负责人推动AI创新和构建AI基础设施
91%的高AI成熟度企业领导者表示已任命专门的AI负责人,其职责包括优先推动AI创新(65%)、交付AI基础设施(56%)、建立AI组织和团队(50%)以及设计AI架构(48%)。
近60%的高AI成熟度企业领导者表示已通过整合AI战略、治理、数据和基础设施能力来提高企业内部的一致性和效率。Tamersoy表示:“这是一项管理AI资源和项目的战略方针,需要由专门的AI团队执行。”
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。