SAP将以全新的执行董事会开启2025财年。这家德国软件公司宣布,39岁的Sebastian Steinhauser将晋升为执行董事会成员。未来,Steinhauser将领导新设立的战略与运营董事会组,在这一职位上继续推动SAP战略的实施并简化公司流程。
SAP在一份声明中表示,由新任首席营销官Ada Agrait领导的战略与运营部门与全球营销部门的整合,旨在改善协作并加强客户和合作伙伴的数字化体验。
Steinhauser于2020年加入SAP,曾担任多个职务,包括首席战略官。在这一角色中,他领导了业务转型管理、业务网络和可持续发展等增长领域。2024年,他被任命为首席战略和运营官。他的职责范围扩大到包括业务运营、流程和IT,以及合作伙伴网络和商业职能。在加入SAP之前,Steinhauser曾在波士顿咨询公司工作。
就在六个月前,SAP刚刚调整了其管理层,2024年8月,销售主管Scott Russell和营销主管Julia White突然离开SAP。
Steinhauser:SAP的未来架构师 SAP SE监事会主席Pekka Ala-Pietila表示:"自2020年以来,Sebastian Steinhauser在SAP的企业战略中发挥了关键作用。我们将他视为SAP未来的重要领导者和架构师。"
SAP监事会还将负责客户服务和交付的执行董事会成员Thomas Saueressig的合同延长了三年至2028年。Ala-Pietila评论说:"他的贡献对确保越来越多的SAP客户选择云计算之路至关重要。"
这家总部位于德国沃尔多夫的公司在第二管理层也有变动。SAP引入了新的CTO和两位新的首席营收官。
Philipp Herzig将在现有首席AI官职务的基础上,担任SAP全球CTO。在新职位上,Herzig将负责监督SAP的技术战略、创新、研究和企业发展。他的工作还包括确保SAP商业AI和可持续发展部门的成功,并继续推动SAP客户和合作伙伴的创新。自2024年9月前任首席技术官Jürgen Müller因"不当行为"而离职后,SAP的CTO职位一直空缺。
Jan Gilg和Emmanuel (Manos) Raptopoulos将作为首席营收官共同领导SAP客户成功组织。目前担任云ERP总裁兼首席产品官的Gilg将负责SAP美洲和全球SAP业务套件。目前担任SAP EMEA区域总裁的Raptopoulos将同时领导SAP MEE和SAP APAC地区。
SAP战略:AI优先,套件优先 Herzig、Gilg和Raptopoulos将向SAP首席执行官Christian Klein汇报,并将成为SAP新成立的扩大执行董事会成员,该董事会将作为战略咨询机构推动公司"AI优先,套件优先"战略的实施。
公司表示:"这将在全球层面协调重要举措,确保它们在整个公司顺利实施。"SAP执行董事会将继续作为SAP SE的最高管理机构。
除Herzig、Gilg和Raptopoulos外,扩大管理董事会还包括Ada Agrait (CMO)、Michael Ameling (BTP总经理)、Sebastian Behrendt (全球财务主管)、Thomas Pfiester (全球客户参与主管) 和Monika Schaller (首席传播官)。
扩大管理团队中的业务套件部门总经理职位仍有待任命。
在SAP 15人的管理层中,有Agrait、Schaller和首席人力官Gina Vargiu-Breuer三位女性管理者,仅占20%。
好文章,需要你的鼓励
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
AI代码编辑器开发商Cursor完成23亿美元D轮融资,估值达293亿美元。Accel和Coatue领投,Google、Nvidia等参与。公司年化收入已突破10亿美元。Cursor基于微软开源VS Code打造,集成大语言模型帮助开发者编写代码和修复漏洞。其自研Composer模型采用专家混合算法,运行速度比同等质量模型快四倍。公司拥有数百万开发者用户,将用新资金推进AI研究。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。