Gartner最新调研结果显示,中国企业在采用生成式人工智能(GenAI)方面雄心勃勃,但进展缓慢,目前只有8%的中国企业将生成式人工智能部署在生产环境中。
Gartner研究总监闫斌表示:“虽然小规模落地已在多种场景下出现,但大规模企业落地仍然较为少见。企业生成式人工智能的发展尚未到达关键里程碑节点。同时,缺少具有显著业务价值的用例、模型(产品)成熟度和企业数据的人工智能(AI)就绪度,是企业生成式人工智能采用面临的首要挑战。”
2024年6 月,只有8%的中国企业将生成式人工智能部署在生产环境中,较之2023年4月的 6%,仅增加了2%。这远远低于全球20%以上的企业采用率(参见图1)。
2024年8月的中国数据、分析和人工智能技术成熟度曲线网络研讨会显示,几个关键因素导致了生成式人工智能在中国落地缓慢,请参见图2。首要挑战包括价值论证、模型与产品成熟度,以及企业数据的AI就绪度。
Gartner研究总监闫斌表示:“鉴于上述挑战,一些在缺乏明确业务价值的情况下大举投资生成式人工智能的企业,可能开始失去耐心。不过,对这些企业来说,关键是要认识到,自ChatGPT发布以来,过去的竞争主要在技术供应商之间展开。现在,在围绕模型和工具的激烈竞争之后,企业之间围绕如何实现有意义的AI成果的竞争才刚刚拉开序幕。这些挑战也可成为数据和分析领导者赢得这场竞赛的关键抓手。”
好文章,需要你的鼓励
最新调查显示,大多数高管预计 AI 将在未来两年内彻底重塑企业。68% 的高管计划在未来一年投资 5000 万至 2.5 亿美元用于生成式 AI。尽管面临经济压力和数据质量等挑战,企业正加速采用 AI,但基层员工的应用仍有待提高。AI 的变革力量已经显现,并正在加速发展。
文章深入探讨了 AI 技术的快速发展趋势及其未来影响。作者通过分析量级增长 (OOM)、AI 能力跃升以及模型的情境意识等方面,论证了 AI 即将迎来重大突破。特别强调了到 2027 年 AI 可能具备 AI 研究员/工程师的工作能力,以及 AI 系统在获得持久记忆和更广泛上下文后将产生质的飞跃。
微软研究人员提出了一种新的内存技术——管理保留内存 (MRM),旨在解决 AI 基础模型工作负载的存储和 IO 问题。MRM 具有短期数据持久性,可优化 AI 推理性能,同时降低能耗和成本。这一创新概念有望填补现有内存-存储层级中的空白,为 AI 时代的内存技术发展开辟新方向。
随着数字化转型成为战略重点,企业纷纷投入资源,但成效不一。麦肯锡研究显示,90%的公司启动了数字化转型,但平均仅实现了预期收益的三分之一。展望2025年,生成式AI等技术的进步正在改变数字化转型格局。为确保成功,企业需要重新校准预期,区分数字化增强与真正的数字化转型,并采取更有效的预算结构。