Gartner最新调研结果显示,中国企业在采用生成式人工智能(GenAI)方面雄心勃勃,但进展缓慢,目前只有8%的中国企业将生成式人工智能部署在生产环境中。
Gartner研究总监闫斌表示:“虽然小规模落地已在多种场景下出现,但大规模企业落地仍然较为少见。企业生成式人工智能的发展尚未到达关键里程碑节点。同时,缺少具有显著业务价值的用例、模型(产品)成熟度和企业数据的人工智能(AI)就绪度,是企业生成式人工智能采用面临的首要挑战。”
2024年6 月,只有8%的中国企业将生成式人工智能部署在生产环境中,较之2023年4月的 6%,仅增加了2%。这远远低于全球20%以上的企业采用率(参见图1)。
2024年8月的中国数据、分析和人工智能技术成熟度曲线网络研讨会显示,几个关键因素导致了生成式人工智能在中国落地缓慢,请参见图2。首要挑战包括价值论证、模型与产品成熟度,以及企业数据的AI就绪度。
Gartner研究总监闫斌表示:“鉴于上述挑战,一些在缺乏明确业务价值的情况下大举投资生成式人工智能的企业,可能开始失去耐心。不过,对这些企业来说,关键是要认识到,自ChatGPT发布以来,过去的竞争主要在技术供应商之间展开。现在,在围绕模型和工具的激烈竞争之后,企业之间围绕如何实现有意义的AI成果的竞争才刚刚拉开序幕。这些挑战也可成为数据和分析领导者赢得这场竞赛的关键抓手。”
好文章,需要你的鼓励
随着组织减少实验性项目,转向实现商业价值,生成式AI的游戏时代或已结束。企业正聚焦于更少、更有针对性的应用场景,以提高业务绩效。调查显示,大多数高层决策者表示对生成式AI试点项目感到疲劳,正将投资转向能改善业务表现的项目上。未来企业将采取更有针对性的方法,关注特定于其业务的应用场景,以实现AI战略的价值。
人工智能正在快速发展,影响着从医疗到招聘等多个领域。像 ChatGPT 这样的工具让个人和组织能以前所未有的方式利用 AI 的潜力。然而,AI 也带来了风险,如可能加剧偏见和系统性不平等。我们需要将 AI 视为一个成长中的孩子,通过负责任的方式引导其发展,确保它成为造福社会的力量。
深度学习无疑是近十年人工智能发展的核心驱动力。在诸多应用场景中,深度学习大放异彩。机器翻译领域取得了重大突破,能够精准地