根据Gartner的最新预测,2024年全球IT总支出预计将达到5万亿美元,较2023年增长 6.8%。这一数字低于上一季度预测的8%。2024年中国IT总支出预计将达到3.9万亿人民币,较2023年增长6.2%。虽然生成式人工智能(GenAI)在2023年大火,但它在短期内不会给IT支出的增长带来显著的变化。
Gartner杰出研究副总裁John-David Lovelock表示:“虽然GenAI将改变一切,但如同物联网、区块链等我们所经历过的其他大趋势,它不会对IT支出产生显著的影响。企业机构将在2024年开始切实投资于规划如何使用GenAI,但IT支出将受到更多传统力量的左右,例如盈利能力、劳动力等,并且将被持续不断的变革疲劳所拖累。”
IT服务将在2024年成为最大的IT支出领域
IT服务将在2024年继续保持增长并首次成为最大的IT支出领域。预计2024年IT服务支出将增长8.7%,达到1.5万亿美元(见表一),这主要是因为企业将投资于组织效率和优化项目,而此类投资在这段经济不稳定时期至关重要。
Lovelock表示:“消费者的设备和通信服务采用率在十多年前就已趋于稳定。消费者的消费水平主要受价格变化和更换周期的影响,只留出了增量增长的空间,因此不可避免地被软件和服务超越。企业正在不断挖掘技术的更多用途,IT已经从后台移到了前台,现在又开始创造收入。在企业挖掘完技术的使用方式和地点之前,企业IT支出不可能先进入到平台期。”
表一、全球IT支出预测(单位:百万美元)
|
2023年支出 |
2023年增长率(%) |
2024年支出 |
2024年增长率(%) |
|
|
数据中心系统 |
243,063 |
7.1 |
|
7.5 |
|
设备 |
699,791 |
-8.7 |
732,287 |
4.6 |
|
软件 |
913,334 |
12.4 |
1,029,421 |
12.7 |
|
IT服务 |
1,381,832 |
5.8 |
1,501,365 |
8.7 |
|
通信服务 |
1,440,827 |
1.5 |
1,473,314 |
2.3 |
|
合计 |
4,678,847 |
3.3 |
4,997,718 |
6.8 |
数据来源:Gartner(2024年1月)
表二、中国IT支出预测(单位:百万人民币)
|
2023年支出 |
2023年增长率(%) |
2024年支出 |
2024年增长率(%) |
|
|
数据中心系统 |
378,739 |
20.7% |
416,446 |
10.0% |
|
设备 |
936,923 |
-6.3% |
966,657 |
3.2% |
|
软件 |
245,908 |
16.4% |
287,042 |
16.7% |
|
IT服务 |
678,401 |
9.9% |
770,163 |
13.5% |
|
通信服务 |
1,430,701 |
2.1% |
1,457,634 |
1.9% |
|
合计 |
3,670,673 |
3.6% |
3,897,942 |
6.2% |
数据来源:Gartner(2024年1月)
首席信息官的变革疲劳继续影响IT支出
2023年的IT总支出增长率为3.3%,较2022年仅增加了0.3%,这主要是由于CIO的变革疲劳所致。预计2024年IT总支出将重拾动力,实现6.8%的增长。
即使在2024年有望重新恢复增长势头,整个IT支出环境仍会受到变革疲劳的轻微影响。变革疲劳可能表现为种种变革阻力,比如CIO在签署新合约、承诺采取长期举措或接纳新技术合作伙伴方面犹豫不决。而对于已经启动的新举措,CIO会要求有更高级别的风险缓解措施和更加确定的结果。
Gartner的IT支出预测方法十分依赖于数千家厂商对整个IT产品和服务范围的严谨销售分析。Gartner结合一手调研技术与二手调研资料,建立了一个完整的市场级规模数据库并以该数据库作为预测的基础。
Gartner季度IT支出预测报告以独特的视角对硬件、软件、IT服务和电信领域的IT支出进行预测,帮助Gartner客户了解市场机会与挑战。Gartner客户可在“Gartner市场数据手册,2023年第四季度更新”中获得最新IT支出预测研究结果。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。