Gartner今日发布了影响数据科学与机器学习(DSML)未来方向的重要趋势。随着DSML行业的快速发展和演变,数据对于人工智能(AI)开发与运用的重要性日益提高,尤其是投资重点也正转向生成式人工智能领域。
Gartner研究总监Peter Krensky表示:“随着机器学习在各个行业的应用持续快速扩大,DSML也正从单纯侧重于预测模型转向更加普及化、动态化和以数据为中心的技术领域,而且生成式人工智能(AI)的热潮也助推了这一趋势。尽管潜在风险不断出现,但面向数据科学家及其组织的新功能和用例也层出不穷。”
Gartner研究显示,影响DSML行业未来方向的重要趋势包括:
趋势1:云数据生态系统
数据生态系统正在从独立软件或混合式部署模式过渡到彻底的云原生解决方案。Gartner 预计,到 2024 年50%的新增云端部署系统将基于一致的云数据生态系统,而非手动集成的单点解决方案。
Gartner建议企业机构对数据生态系统的两种能力进行评估:一是解决数据分散化问题;二是访问自身环境之外的数据并与之集成。
趋势2:边缘AI
企业机构越来越需要通过边缘AI在边缘位置创建和处理数据,这将帮助企业机构获得实时洞察力,发掘新业务模式并满足严格的数据隐私要求。边缘AI还能帮助企业机构提高AI的开发、编排、集成和部署能力。
Gartner 预测,到 2025 年超过55%的深度神经网络数据分析将发生在边缘系统的数据捕获点,而 2021 年这一比例还不到 10%。企业机构应确定,需要将哪些应用、AI训练和推理能力转移至物联网终端附近的边缘环境。
趋势3:负责任的AI
负责任的AI使AI成为一种积极力量,而不是对社会和AI自身的威胁。当企业机构需采用AI做出商业逻辑和道德伦理的正确选择时,会遇到许多问题,例如商业和社会价值、风险、信誉、透明度和问责制等。负责任的AI有助于解决这些问题。Gartner 预测,到 2025 年1% 的AI服务提供商将大规模使用预训练的AI模型,使负责任的AI成为社会关注的焦点。
Gartner 建议企业机构在挖掘AI的价值时应考虑风险系数,并且在运用AI解决方案和模型时保持谨慎。应当让供应商做出管理好自身风险与合规义务的保证,以防止给企业机构造成潜在的经济损失、法律诉讼和声誉损害。
趋势4:以数据为中心的AI
这一方法不再以模型和代码为中心,而是以数据为中心打造更强大的AI系。企业机构将采用AI专用数据管理、合成数据以及数据标记技术等解决方案来应对许多数据难题,例如数据的可访问性、数量、隐私性、安全性、复杂性和范围。
使用生成式AI创建合成数据是一个正在快速发展的领域,这项技术减轻获取真实世界数据的负担,可更有效地训练机器学习模型。Gartner 预测,到 2024 年60%的AI数据将是合成数据,被用于模拟现实、未来场景和降低AI风险,而 2021 年的这一比例仅为 1%。
趋势5:加快AI投资
进入解决方案实施阶段的企业机构,以及希望通过AI技术和相关业务实现增长的行业,将继续加快对AI的投资。 Gartner 预测,到 2026 年底依靠基础模型(通过海量数据训练过的大型模型)的AI初创企业将获得超过 100 亿美元的投资。
在Gartner近来针对2500多位企业高层的一项调研中,45%的受访者表示,最近的 ChatGPT热潮促使其增加了对AI的投资。70%的受访者表示其企业正处于研究和探索生成式AI的阶段,还有19%的人表示其企业已进入试点或生产阶段。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。