至顶网CIO与应用频道 03月09日 北京消息:Gartner数据显示,到2020年,人工智能(AI)将成为30%以上首席信息官(CIO)的首要任务。尽管人工智能有望改变世界,但只有在企业机构有效应用人工智能的情况下,这种梦想才能成真。
如果您是一位正在尽力挖掘人工智能的全部潜力的首席数据官(CDO),那么现在就是您扩大战略、评估人工智能对商业模式和客户体验的影响、为其它战略性挑战做好准备的最佳时机。
当前的关注热潮源于高级分析(advanced analytics)和机器学习(machine learning)所带来的效益。这种转变一部分得益于新出现的低成本、大规模和随时可用的计算能力,以及可用于训练机器、构建模式和产生洞察的海量数据。
不过,要注意的是,许多企业机构刚刚步入人工智能领域,它们正在积累知识和制定应用战略。如果您与许多数据和分析领导者想法没有分别,那么制定人工智能战略及确定其用途将成为真正的挑战。
越来越多的企业机构发现,人工智能并非直接从根本上完善现有业务活动,而是以前所未有的方式为数据驱动型业务的战略创造潜力。这种潜力将使数据和分析成为战略的主要推动力,相应地,这也要求企业机构对人工智能潜力进行更广泛的研究。
在评估人工智能的潜力时,采用我们通常将评估数据和分析策略作为其它战略工作副产物的方式显然不够。我们必须了解人工智能的相关新兴用途,还应熟悉新的战略发展实践,考虑业务变化的潜力。
挖掘人工智能的全部潜力
首席数据官应该关注以下三个方面:
1) 明确商业价值
首先,从商业价值和管理角度评估人工智能的相关性,以及与具体业务运营和IT挑战的关系。
商业价值是人工智能计划获得关注的必要条件。许多企业机构都迷恋人工智能的能力,但在这个过程中,它们并未确定最具战略价值的决定因素。商业价值应阐明如何利用诸如数据科学家这样的关键资源;新的解决方案如何从人工智能中受益;以及如何坚定地发展实现长期业务成果所需的各种能力。
利用框架来扩展战略库可以帮助您确定人工智能对业务模型组成部分的适用性及其相互关系。业务模型评估框架(business model assessment frameworks)为描述您所在企业机构的现有业务模型制定了一种通用语言。它还有助于评估各个组成部分的变化并提出变革意见,由此改善成本结构、实现数据驱动的收入流、或确定数据和分析在新的关键协同中发挥哪些重要作用。它还有助于确定相关部分应发生哪些变化才能支持潜在的广泛业务模型变革。
2) 利用客户体验中的颠覆性潜力
人工智能为洞察力的获取、个性化的实现和客户体验的增强提供了大量机会,而这也是应用人工智能和机器学习的最佳机会之一。评估人工智能的颠覆性潜力让您能够以全新的方式来吸引客户、深入了解客户行为以及以数字化业务的方式来塑造未来的客户体验。
改善客户的人工智能体验可谓机会良多,其中包括开发客户洞察力和规划定制式客户旅程(developing customer insights and customising their journey),聊天机器人和虚拟助理(chatbots and virtual agents),以及市场营销预测分析(predictive analytics for marketing)。您应利用诸如旅程体验筹划(journey mapping)和结果驱动型创新(outcome-driven innovation)等方法来找到未满足的客户需求和应用机会。
3) 消除组织、管理和技术影响
您必须为由人工智能所带来的组织、管理和技术挑战做好准备。缺乏必要技能通常会成为应用人工智能的主要障碍,因此发展基本技能将关乎成败。伴随数据科学技能发展和首席数据官机制重构产生的显著影响将促进智能的创造和应用。
人工智能的许多优势都来自机器学习提供的预测。但可惜的是,各企业机构往往并没有为使用这些数据做好相应准备,而只是凭直觉贸然行事,更别说在决策过程中对分析结果进行评估和概率评定。这表明数据驱动型文化的培养与从商业角度来“说数据语言”的能力同样重要。
利用人工智能深入了解人类无法企及的领域能够推动预测分析(predictive analytics)、自然语言处理(natural-language processing)、计算机视觉(computer vision)、图像识别(image recognition)和许多其它相似智能向前发展。许多业务领域必将受益于人工智能生成的洞察和能力,但管理它们可能是一项挑战,因为这些方法如何实现预测结果的过程并不透明,而且确保优质结果和适当使用的流程也不健全。例如:经过相同分析的相同数据可能会根据用途受到不同管理——一种方法可能符合道德标准,而另一种则反之。安全性、隐私性、合规性和保留性也是如此。
总而言之,要应对这些挑战,您必须培养数据驱动型文化;谨慎应对管理和道德考虑因素;避免轻信危险的谣言。除此之外,还应为发展人工智能能力建立一个学习实验室。
好文章,需要你的鼓励
据报道,OpenAI正与亚马逊洽谈至少100亿美元的融资。亚马逊此前已是Anthropic的最大投资者,并为其建设了110亿美元的数据中心园区。若融资达成,OpenAI将采用AWS的Trainium系列AI芯片。Trainium3采用三纳米工艺,配备八核心和32MB SRAM内存。AWS可将数千台服务器连接成拥有百万芯片的集群。报道未透露具体估值,但OpenAI最近一次二次出售估值已达5000亿美元。
伊斯法罕大学研究团队通过分析Google Play商店21款AI教育应用的用户评论,发现作业辅导类应用获得超80%正面评价,而语言学习和管理系统类应用表现较差。用户赞赏AI工具的快速响应和个性化指导,但抱怨收费过高、准确性不稳定等问题。研究建议开发者关注自适应个性化,政策制定者建立相关规范,未来发展方向为混合AI-人类模型。
各行业企业存储的数据量持续攀升,5PB以上已成常态,10PB以上也日益普遍。2026年非结构化数据管理的主题是全面增长:更多数据、更多投资、更多痛点以及更多AI安全风险。AI应用加速普及、数字化信息激增以及富媒体和传感器数据大幅增加推动了数据增长。随着AI推理应用的发展,企业将意识到非结构化数据管理对AI投资回报率的关键作用。
这项由伊利诺伊大学香槟分校等四所院校联合完成的研究,提出了名为DaSH的层次化数据选择方法。该方法突破了传统数据选择只关注单个样本的局限,通过建模数据的天然层次结构,实现了更智能高效的数据集选择。在两个公开基准测试中,DaSH相比现有方法提升了高达26.2%的准确率,同时大幅减少了所需的探索步数。