认知计算是未来业务应用的起点,咨询师Judith Hurwitz说,但是企业可能不用完全购买全范围的系统。相反,这些都会作为一系列云服务提供出来。
“这不是必须加到数据中心的东西,除非你的确有大量需求,”Hurwitz最近在纽约举行的Cloud Expo上说。
她认为该技术会作为基于服务的IT模型企业的一部分来继续演进。
认知计算系统——或者有时候称为认知系统——和人脑功能类似。Hurwitz说,通过人类和机器的交互,他们可以用于分析并且关联海量数据,并且基于这些数据来构建应用,而不是像传统应用那样基于业务逻辑或者程序。
认知系统并不仅仅是机器学习算法,虽然训练它能够洞察数据里的模式并理解其中的上下文是它很重要的部分,Hurwitz说。有由很多部分组成的大型,复杂系统,都是基于公有云,私有云或者本地基础架构的。这之上是内部和外部数据源——非结构化数据,比如文本,视频和图案,以及结构化数据,比如数据库记录,以及数据访问和管理服务。
认知系统的另一个核心组件是ontologies。这些是系统吸收知识并且从中学习特定主题的知识数据库。最上层是视图化服务,新的应用程序可以基于这些服务来构建。
大型研究性大学可能会从头开始构建这样的系统来做实验,但是ontologies marketplace以及特定行业所需的预测试的数据集会服务于大多数需要构建基于数据的应用的企业。
一旦工具可以使用,企业就能够开始行动,但是他们“并不会全面发展;而是会选择一个领域,并且通常会从他们想要解决的特定问题开始,”Hurwitz说。
对于很多业务问题而言,称为监督式学习的机器学习类型很有用,她说。该算法用来监测或者匹配特殊类型数据的模式——比如,在某年的特定日期出售的商品数量——并且可以用来预测特定的市场宣传会起到什么影响。
还有别的模型。加强的学习算法基于性能反馈,比如打游戏的结果,来开发策略。未监督的学习会查找大型数据里隐藏的关联;这在企业不知道应该查找什么的时候很有用。
随后有很多试用和错误:形成假设,确定正确的数据源,向系统注入数据并且看看会发生什么。
“操作,查看如何工作——然后重复执行,”Hurwitz说。“这的确是我们想实现的知识的整个生命周期。”
该领域才刚刚萌芽,IBM的Watson被用于医疗研究,并且计划用于比如通信和财务服务领域。Google和Amazon有自己的认知计算方案,并且肯定会有更多的科技公司进入该领域。这些努力的结果,Hurwitz说,将会带来使用技术的全新方式。
“这正是数字化革命的真正意义所在,”Hurwitz说,指的是数字化技术引领的业务和产业。“这并非关于创建更快的网站,或者能够自动化一个流程。这真的是关于转变我们对于数据以及逻辑的思考方式。”
咨询师Judith Hurwitz在两部分报告的第一部分探讨了认知系统如何构建应用。
好文章,需要你的鼓励
随着AI策略成熟,CIO开始重新考虑对公有云的依赖,私有云和本地环境重新受到关注。调查显示,67%的企业领导计划在未来12个月内将部分AI数据迁移至非云环境。主要原因包括成本可预测性、数据隐私保护、安全问题和云集成挑战。对于持续的AI工作负载,购买自有GPU比租用公有云更经济。私有云支出增长更快,预计2025年将有54%的组织在私有云上投入超过1000万美元。
沙特TachyHealth团队开发的32亿参数医疗AI模型Gazal-R1,通过创新的双阶段训练方法在医疗推理任务上超越了12倍大的模型,在MedQA等测试中取得87.1%的优异成绩,展现了精巧训练策略胜过规模扩张的重要启示,为资源有限的医疗AI研究提供了新路径。
本文深入分析了从传统AI发展到AGI过程中可能出现的智能爆发现象。基于AI专家共识的2040年AGI实现预期,文章探讨了七种主要发展路径,重点关注突破性的"登月路径"。智能爆发理论认为,智能可以像原子链式反应一样相互促进,快速产生大量新智能。文章预测2038-2039年可能发生智能爆发,随后在2040年实现AGI,但也指出了关于智能爆发的启动、控制和潜在风险等争议问题。
奥地利维也纳医科大学研究团队开发了RetFiner技术,通过让眼科AI模型同时学习OCT图像和医疗文字描述,显著提升了诊断准确率。该方法采用四种训练任务让AI模型建立图像与文字的深层联系,在三个主流眼科AI模型上实现了2-6个百分点的性能提升,为医学AI发展开辟了新方向。