AI智能体(AI Agent)也被称为代理型AI。这项技术正在引发巨大的热潮,是突破AI功能极限、深入改变企业运营与竞争方式的新一代AI解决方案。
AI智能体能够提高资源效率、实现复杂任务的自动化并推动业务创新,其能力超过了基于脚本的自动化机器人和虚拟助手。
它最大的不同在于决策权从人类转移到机器,这为代理型AI的商业价值奠定了基础并使其具备重塑整个行业的潜力。
Gartner在2025年1月对3412名网络研讨会参与者进行了调查,53%的受访者表示其企业正处于AI智能体的探索阶段,25%表示处于试点阶段,只有6%表示已进入生产阶段。另外,40%的受访者计划在未来6个月内推进相关项目。
企业对AI智能体的兴趣激增也带来了各种各样的解释和不切实际的期望。随着大语言模型(LLM)的快速发展,许多企业正基于这种模型构建AI智能体。虽然这些解决方案能够收集和整合信息并与应用交互完成任务,但它们常常无法做出符合企业场景的决策。
AI智能体的实际使用效果与宣传的差距依然显著。这可能导致企业忽视大规模部署AI智能体所面临的真正成本与复杂性,从而阻碍项目进入到生产阶段。
因此,企业必须穿透表象,辨别AI智能体的真相、误区与影响,将重点放在开发或使用AI智能体所需的核心企业组件上,以此提升它们的商业价值。
组合搭配各种AI智能体能力
如果企业需要的是能够理解用户意图、检索和处理多种数据源的信息并使用工具完成任务的AI解决方案,那么AI智能体无疑是一个好的选择。
企业必须随机应变,根据具体应用场景组合适配的技能,比如根据可用的数据、需要交互的工具和系统以及所需的LLM功能来配置或开发AI智能体。这种定制化能使代理更加贴合业务场景并创造更大的价值。
了解AI智能体的局限性
企业必须了解AI智能体的局限性,才能解锁其全部业务价值。这不仅能够指导实施过程,还能够管理利益相关者对范围、性能和影响的预期。
AI智能体的主要局限性之一是缺乏像世界模型这样的关键组件,而这是AI智能体建立对环境的内部理解并预测结果的基础。
人类通过内部或抽象表征来理解世界的运作方式。例如孩子在多次看到苹果从树上掉落后,就能预测下次苹果会如何掉落。当遇到异常或意外情况(例如苹果漂浮在空中)时,我们会尝试进行验证并且可能需要更新心中的模型或世界状态。
这种主动学习过程是AI智能体“理解”上下文并根据需要进行更新或改进的关键。当前基于LLM的AI智能体的记忆组件通常基于聊天记录和系统日志,但这些组件无法完整捕获和存储代理自身、环境或世界的动态变化。
由于基于LLM的AI智能体从数据分布中识别出相关性和概率而非因果关系,因此它们不一定是最好的AI技术选择。例如在路线规划等对准确性和效率要求极高的领域,基于图的算法仍优于LLM。
此外,企业需要明白AI智能体不同于AI模型。AI智能体是通过整合多种技术实现感知、推理和行动的复合型AI系统。LLM所不擅长的预测、规划和优化等工作却是其他AI技术的强项。
了解这些局限性对企业至关重要,我们距离能够将关键决策任务托付给基于LLM的代理还有很长的路要走。
专注于核心企业组件
鉴于AI智能体的开发具有高度的不确定性、技术复杂且更新换代速度快,企业必须采取敏捷的策略。这将帮助企业大幅减少从投入到产出的时间,建立信任和品牌忠诚度,适应技术和市场的不断发展。
在开发AI智能体框架或解决方案时,应考虑采用“即插即用”型组件、技术或模型避免厂商锁定。不建议在内部建立庞大的框架和工具,而是应该优先选择开放、具有互操作性的供应商解决方案或积极使用和贡献开源AI智能体技术堆栈的供应商解决方案。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。