SAP将以全新的执行董事会开启2025财年。这家德国软件公司宣布,39岁的Sebastian Steinhauser将晋升为执行董事会成员。未来,Steinhauser将领导新设立的战略与运营董事会组,在这一职位上继续推动SAP战略的实施并简化公司流程。
SAP在一份声明中表示,由新任首席营销官Ada Agrait领导的战略与运营部门与全球营销部门的整合,旨在改善协作并加强客户和合作伙伴的数字化体验。
Steinhauser于2020年加入SAP,曾担任多个职务,包括首席战略官。在这一角色中,他领导了业务转型管理、业务网络和可持续发展等增长领域。2024年,他被任命为首席战略和运营官。他的职责范围扩大到包括业务运营、流程和IT,以及合作伙伴网络和商业职能。在加入SAP之前,Steinhauser曾在波士顿咨询公司工作。
就在六个月前,SAP刚刚调整了其管理层,2024年8月,销售主管Scott Russell和营销主管Julia White突然离开SAP。
Steinhauser:SAP的未来架构师 SAP SE监事会主席Pekka Ala-Pietila表示:"自2020年以来,Sebastian Steinhauser在SAP的企业战略中发挥了关键作用。我们将他视为SAP未来的重要领导者和架构师。"
SAP监事会还将负责客户服务和交付的执行董事会成员Thomas Saueressig的合同延长了三年至2028年。Ala-Pietila评论说:"他的贡献对确保越来越多的SAP客户选择云计算之路至关重要。"
这家总部位于德国沃尔多夫的公司在第二管理层也有变动。SAP引入了新的CTO和两位新的首席营收官。
Philipp Herzig将在现有首席AI官职务的基础上,担任SAP全球CTO。在新职位上,Herzig将负责监督SAP的技术战略、创新、研究和企业发展。他的工作还包括确保SAP商业AI和可持续发展部门的成功,并继续推动SAP客户和合作伙伴的创新。自2024年9月前任首席技术官Jürgen Müller因"不当行为"而离职后,SAP的CTO职位一直空缺。
Jan Gilg和Emmanuel (Manos) Raptopoulos将作为首席营收官共同领导SAP客户成功组织。目前担任云ERP总裁兼首席产品官的Gilg将负责SAP美洲和全球SAP业务套件。目前担任SAP EMEA区域总裁的Raptopoulos将同时领导SAP MEE和SAP APAC地区。
SAP战略:AI优先,套件优先 Herzig、Gilg和Raptopoulos将向SAP首席执行官Christian Klein汇报,并将成为SAP新成立的扩大执行董事会成员,该董事会将作为战略咨询机构推动公司"AI优先,套件优先"战略的实施。
公司表示:"这将在全球层面协调重要举措,确保它们在整个公司顺利实施。"SAP执行董事会将继续作为SAP SE的最高管理机构。
除Herzig、Gilg和Raptopoulos外,扩大管理董事会还包括Ada Agrait (CMO)、Michael Ameling (BTP总经理)、Sebastian Behrendt (全球财务主管)、Thomas Pfiester (全球客户参与主管) 和Monika Schaller (首席传播官)。
扩大管理团队中的业务套件部门总经理职位仍有待任命。
在SAP 15人的管理层中,有Agrait、Schaller和首席人力官Gina Vargiu-Breuer三位女性管理者,仅占20%。
好文章,需要你的鼓励
谷歌发布代理支付协议AP2,支持AI代理代表用户自动购物和决策。该开放协议获得60多家商户和金融机构支持,旨在实现AI平台、支付系统和供应商间的互操作性。协议要求两级审批机制:意图授权和购物车授权,确保交易可追溯。支持全自动购买和加密货币支付。万事达、美国运通、PayPal等主要金融服务商已表示支持。
腾讯混元团队推出P3-SAM系统,这是首个能够自动精确分割任意3D物体的AI模型。该系统采用原生3D处理方式,摆脱了传统方法对2D投影的依赖,在近370万个3D模型上训练而成。P3-SAM支持完全自动分割和交互式分割两种模式,在多个标准测试中达到领先性能,为游戏开发、工业设计等领域提供了强大的3D理解工具。
CrowdStrike在其年度Fal.Con 2025大会上发布了智能代理安全平台和智能代理安全团队两款新产品,旨在应对AI时代日益增长的安全需求。新平台基于企业图谱架构,统一企业遥测数据,配备AI优化查询语言。Charlotte AI AgentWorks提供无代码平台,让安全团队可轻松构建和部署可信安全代理。智能代理安全团队则通过AI驱动的代理直接服务客户,解决传统防御无法应对AI速度威胁的问题。
NVIDIA Research推出了革命性的UDR系统,让用户可以完全自定义AI研究助手的工作策略。该系统解决了传统研究工具固化、难以专业化定制的问题,支持任意语言模型,用户可用自然语言编写研究策略,系统自动转换为可执行代码。提供三种示例策略和直观界面,实现了AI工具的民主化定制,为专业研究和个人调研提供了前所未有的灵活性。