众所周知,与其他高管相比,CIO 和 CTO 等技术领导者的任期相对较短。
CIO 的平均任期在 3-5 年之间,明显短于 CEO 和 CFO 的 5-7 年以上。
Nash Squared 去年的数字化领导力报告显示,超过 70% 的 CIO 在其组织任职不到 5 年,接近 40% 的任期不足 2 年。
相比之下,2018 年的数据显示,60% 的 CIO 任职不到 5 年,31% 不足 2 年,这表明任期正在缩短。
当然也存在例外,有些 CIO 任期较长 - 该报告显示 17% 的 CIO 任职超过 10 年。
变革与转型的周期
短任期现象有其内在逻辑。技术变革的速度可能是所有业务职能中最快的,并且仍在持续加速。几乎所有企业都在进行数字化转型。CIO 通常被任命来指导组织度过转型的关键阶段 - 比如采用云端企业平台或整合 AI 及自动化技术 - 为组织未来的可持续发展铺路。
当然,CIO 的工作并不会就此结束,转型也是持续的。技术转型永远不会"完成",而是随着技术栈不断调整和演进的持续过程。
尽管如此,CIO 进入企业时往往带着引导组织完成重大发展周期的明确目标 - 当这个目标实现后,他们自然会寻求新的挑战。CIO 可能在其他地方已有转型经验 - 这正是他们被招募的原因 - 这使得他们很可能会继续在转型道路上前进。
规模和行业差异
如前所述,情况并非一成不变。每个人都有自己的动机、优先事项和职业抱负。有些 CIO 可能希望任职更久,引导组织度过演进周期。在带领企业完成密集转型后,他们希望见证成果落地并成为常态。
公司规模和类型也会带来差异。在拥有数千员工的大型上市公司,CIO 的角色更多是引导复杂性而非短期变革。这天然是一个渐进式的角色 - CIO 下面可能有多个负责具体变革项目的转型主管。小型企业包括初创公司和扩张期公司的变革周期通常更快,因此技术领导者的更替也可能更频繁。例如,大型金融服务机构的 CIO 任期可能比金融科技颠覆者更长。
就行业而言,政府和公共部门 CIO 的任期往往更长,因为变革速度较慢。在商业领域则没有明显规律,主要取决于组织自身情况、技术成熟度和战略目标。
对组织的影响
从组织角度看,找到合适人选引导企业度过转型关键期,可能意味着要接受他们几年后就会离职。这会引起一定不安。许多企业因为候选人有 3-5 年就换工作的历史而犹豫是否录用。但这种节奏是他们的特质,也是他们出色的原因。不如与他们坦诚沟通。如果录用,保持诚恳对话。观察双方契合度。随着新技术重点和挑战出现,情况可能会改变 - 要保持灵活。
对个人的影响
从个人角度看,高变革率几乎是必然的。不只是技术领导职位任期短 - 技术团队的大多数岗位都在快速演进。需要不断学习新技能,应对生成式 AI 等新焦点 - 角色随技术本身变化而变化。
然而,不要认为成为或有志成为 CIO 就意味着一生不断跳槽。虽然 CIO 角色往往侧重推动技术变革,但其范围也在扩大。我们的数字化领导力报告显示,近 70% 的 CIO 或同等职位进入董事会。CIO 现在跨部门参与,不仅限于技术团队,还更多参与整体业务战略。因此任期取决于 CIO 个人目标和关键目标的实现。
职业模式也在拓展。临时 CIO - 为特定目标短期任命 - 越来越普遍,同样还有兼职 CIO 可能同时担任多个兼职职位。资深 CIO 晚期也常转任非执行职位,从新角度创造价值。
与变革同行
CIO 任期相对较短的模式将持续存在。事实上,随着技术变革速度加快,特别是生成式 AI 的出现,这种趋势可能更明显。这本身既非好事也非坏事,只是反映了技术转型的特点 - 以及组织和技术专业人士需要敏捷灵活地适应变革。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。