CIO们如何实施最好的移动安全? CTO Niel Nickolaisen认为可以从伟大的心理学家Abraham Maslown那里找到答案。 Maslow的需求层次理论从最基本的需求开始(“生理”需求和“安全”),然后达到人类需求的最高层次——自我实现。
其中还包括归属感,爱和尊重。归属感,爱和尊重都是双向模式——我们期望与他人沟通,相爱,我们希望他人与我们沟通,爱我们。我们想要有自尊,并获得尊重。
作为IT领导人,破坏我们与客户之间的关系,失去他们的喜爱和尊重的最快方式,就是对渴望自我实现的人,强加太多控制。具体来说,CIO们的IT计划充斥着,限制内部用户使用技术,能做什么和不能做什么。我很久以前就意识到影子IT的存在,因为我的用户无法从我的团队,得到他们真正需要的。
最好的移动安全没有简单的答案
与此同时,我们必须考虑某种程度的控制,应对有害行为的风险。我们需要阻止,有人从街上捡到一个U盘,插入USB硬盘驱动器,然后释放病毒或勒索软件。我们需要有适当的控制,这样才不会丢失关键的客户或雇员数据。
应用到移动设备,更需要考虑风险和控制之间的平衡。移动设备(智能手机和平板电脑),从本质上讲, 旨在混合企业和个人的计算机体验。我的手机存储了个人照片,架构图和流程图。我的应用包括企业电子邮件和费用审批,也有我的个人手机银行。
我们如何提供最好的移动安全,而不让企业中的每个人觉得移动计算体验是噩梦呢?应该允许什么,阻止什么呢? 当我面对模棱两可,看似无法双赢的局面,我试着回到一些基本原则。其中之一就是,在评估风险后,才做出决定。我承认,听起来有点老生常谈,但往往我会做出平等对待所有风险的决定。
最好的移动安全评估风险可能性/影响
移动设备,会带来什么风险?是否在设备上存储机密或关键数据?如果有,什么数据?如果有人可以获取这些数据,他们能做些什么来危害企业?我们的电子邮件包含什么类型的信息?如果有人获取那些业务流程的图片,会危害企业吗?如果有人能够访问我的费用报告应用,能干些什么?
当评估风险时,我首先确定特定的风险,然后对每个风险,定义风险的可能性和影响。然后,找出最好的,最实用的方法来减轻风险,使用最高可能性-影响的组合。 例如,在手机上可以存储哪些员工或用户的个人身份信息(PII)?如果可以存储很多,我们就有可能丢失数据,并且根据PII的深度和广度,影响可能是巨大的。
在这种情况下,最佳的移动安全计划必须有强大的PII风险缓解措施,可能要求我们进行适当控制。但至少,通过描述可能性-影响组合,我们可以清楚风险,并进行减缓控制。
另一方面,如果没有人能够在手机上接收或存储关键的PII,可能性-影响组合就较小,我们可能就不需要控制用户的生活。这种方法将我们的安全对策与用户对于个人控制的需求相契合。
并且,如果你受到信息安全审计时,这种方法,你可以向任何审计员解释(虽然,根据我的个人经验,一些审计人员不了解这种在风险缓解前,进行风险评估的方法)。 这些风险是因为在确保移动设备安全上做的不够,但是也有风险是因为做的太多。使用这种基于风险的方法,一直帮助我找到正确的平衡。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。