至顶网CIO与应用频道 11月21日 北京消息:电子商务是日常生活不可分割的一部分,物流速度很大程度决定购物体验。京东商城的崛起的制胜因素就在于物流。京东智慧的供应链造就了带来了非常优秀的用户体验,其实物流有着非常长且复杂的链条,包括实时快递监控、智能配送、件量预测、库存优化、供应链管理、未来物流方式探索等。其中也分布着很多的场景和应用模块。
“京东-爱动人工智能叉车效率管理模组项目”旨在开发一种便于安装的小型化模块群组,用于对京东仓库内现有的叉车的日常装卸货数据进行统计,以便在未来对叉车的仓库作业轨迹和作业数量进行优化,提升京东物流资产的利用效率。自2016年底,爱动与京东物流合作,开始了“京东-爱动人工智能叉车效率管理模组”的开发计划。
爱动超越人工智能科技公司在运动传感器的模式识别领域有较长时间的经验积累,并且与Intel合作推出过基于Intel Curie模组的智能跑鞋(已经在京东众筹发售)。基于Curie的RBF神经网络技术,在项目开始初期,爱动团队采用激光测距仪辅助6轴惯性传感器,同时在服务器端配合机器学习算法,实现了对叉车主要日常动作的检测:空驶、水平搬运、静止,空叉升降以及装卸货升降等。相对于传统的叉车效率检测工业装置,该设备尺寸小巧,部署简单,不需要对叉车进行任何改造,并且内置锂聚合物电池,充满电后可以连续工作12个小时,基本满足了京东的初期项目需求。
在该版本的基础上,京东提出了新的需求,即能够实现粗略的“叉车轨迹记录”,同时“不能部署任何基站设备”。传统的物流技术解决方案中,室内的轨迹定位技术往往需要依赖大量的“电子标签”或者“有源基站”,独立的轨迹计算,并且不对叉车进行改造难度非常大。新技术中的VSLAM技术可以达成这一目标,但是设备成本和开发成本过高,完全超出了项目预算。
爱动团队发挥了在机器人技术和运动模式匹配技术多年的积累,利用“光流+惯性导航“技术再次达成了京东的新目标。
目前市面上的高技术无人机,在实现室内定点定高时,往往采用“超声波+光流”的技术,该技术通过摄像头计算两帧画面之间的“特征像素位移”确定飞行器的物理漂移,并根据PID算法纠正飞行器的位置。这样即便在没有GPS的室内,也可以实现飞行器的悬停定点。大疆精灵三开始的各个系列无人机都配备了这项“黑科技”。
爱动团队正是借助这项技术实现了京东的“无基站粗略室内轨迹”需求。通过集成“光学摄像模块+激光测距仪+ARM 微型计算机”,爱动团队在短短45天内从硬件到软件实现了相对稳定的轨迹定位模组。该模组同样非常小巧,便于安装,只需要叉车提供一个12v的供电接口,便可以通过磁铁固定在车辆顶部,通过对车辆后部的地面进行特征追踪,实现对车辆运行轨迹的计算。
通过加入轨迹计算模组,京东-爱动叉车效率监控模块目前可以非常准确地监控车辆的工作状态,并且可以相对准确地统计一天内叉车的工作里程,对提升叉车的工作效率提供了有力的数据支持。
未来,爱动团队还会继续和京东合作,开发更加可靠经济的“车辆效率管理模组”。目前爱动团队已经和北京的知名高校实验室达成了合作协议,建立了由十多名博士和硕士组成的研究团队,主攻机器视觉在仓储移动平台领域的应用技术。希望在2018年可以推出更加小型便捷的效率监控模块,实现对物流资产的智能化管理。
好文章,需要你的鼓励
美国多州和部分国家要求特定应用进行年龄验证,澳大利亚已禁止16岁以下用户使用社交媒体。新提案《应用商店问责法案》建议由苹果和谷歌负责统一验证用户年龄,而非各开发者单独验证。这将提升用户体验,用户只需向苹果或谷歌验证一次身份。凭借苹果在隐私保护方面的优势,该方案可扩展至Safari浏览器,为需要年龄验证的网站提供确认信息,而无需透露用户个人数据。
香港大学团队开发的"炼金术师"数据筛选系统,能从海量图片中精选一半高价值数据,训练出比使用全量数据更优秀的AI图像生成模型。该方法通过观察模型学习反应判断数据价值,发现适度复杂的图片比简单图片更有训练效果,实现了5倍训练加速和显著性能提升。
AI编程助手Cursor背后的公司Anysphere宣布收购AI代码审查工具初创公司Graphite。据报道收购价远超Graphite今年早些时候B轮融资时2.9亿美元的估值。此次收购具有战略意义,将AI代码生成与AI代码审查工具相结合,可大幅提升从编写到交付的整体效率。Anysphere估值已达290亿美元,近期频繁收购,上月收购技术招聘公司,今年7月还收购AI客户关系管理初创公司Koala的团队。
哥伦比亚大学等机构研究团队发现,在AI模型的强化学习训练中存在一个悖论现象:阻碍探索和阻碍利用竟然都能提升性能。研究揭示了裁剪技术实际是熵调节器而非学习信号,策略熵与性能无直接因果关系,并提出奖励错配理论解释随机奖励的积极效果,为AI训练方法设计提供了新的理论基础。