ZD至顶网CIO与应用频道 10月31日 北京消息:美国时间10月27日,滴滴联合创始人兼CTO张博受邀在硅谷斯坦福大学给International Conference on 3D Vision 2016大会(下称:3DV大会)的“最佳论文奖”获得者颁奖。据悉,最佳论文获奖团队由来自苏黎世联邦理工学院(ETH Zurich)和Disney Research Zurich的四个人组成,他们的论文获得组委会的一致认可,得到了最高投票。现场专家称:“凭借密集光场下复杂物体重建的高效算法,他们获得了大会最佳论文奖。”
张博给“最佳论文获”获得者颁奖
据介绍,自2013年以来,3DV会议围绕计算机视觉和图形3D研究领域的多方面主题,包括创新的光学传感器、信号处理技术、几何建模、呈现和传输、可视化和互动,以及多种应用,推动了多项研究成果分享,是一个全球高端技术交流与分享平台,包括工业界、学术界等顶级专业人士均到场参会。本届演讲嘉宾包括来自Google、Facebook、微软的专家及MIT和UCLA大学教授等学界泰斗。
此次张博也受邀参加了3DV大会的专题演讲,他首先对滴滴的四年业务发展历史作了简单介绍:“滴滴成立于2012年,当时主要解决的是司机与乘客双方的信息不对称问题;2013年我们迅速发展,这一年的10月,我们市场占有率实现第一;2014年3月,我们用户数超过1亿,同年8月专车业务上线;2015年2月,滴滴和快的合并,并陆续上线了快车、顺风车和代驾、巴士业务;2016年3月,我们日订单突破1000万,5月获得苹果战略投资,8月并购Uber中国。”
张博在现场演讲
同时,他还透露了滴滴如何利用人工智能对出行带来的改变。“当乘客发出订单,我们会根据历史上发布订单和乘客行驶轨迹预测会在哪里上车,我们设置这个地点,司机会直接到该点接乘客,这是我们的推荐上车地点功能,可减少与司机沟通具体接驾时间。”
利用人工智能技术,滴滴可以为用户作路线规划,“ETA是很复杂的技术问题,从A点到B点到底需要多长时间,需要预估未来的路况。”
“拼车则是提高交通效率的大杀器,怎么满足出行需求又不增加道路车辆,拼车是唯一办法,当乘客发出拼车订单时,我们不仅要计算路径匹配程度,还要预测同路线是否有其他乘客能拼成功。”公开数据显示,滴滴利用算法技术,每天有超过200万人次通过拼车出行,大量减少了道路上的车辆,为社会创造了价值,而这些复杂的拼车运算,都是在以秒计算的很短时间内完成。
提及智能调度,张博表示,理想的交通状态是,全城拥有一个智能交通大脑,可对未来的出行需求进行预测。“滴滴对15分钟后供需预测的准确度达到了85%,平台会调度司机满足未来需求,使得未来该区域供需不平衡的概率下降。比如,预测某个区域15分钟后出现供给需求,就会把运力往这个区域调度,使得未来该区域供需不平衡的概率下降。”
张博演讲后的提问环节,来自全球学者围绕滴滴在人工智能、计算机视觉等领域的研究挑战,以及滴滴学术合作计划和高水平人才招募计划向他提问,张博一一回答了大家的问题,并表示滴滴期待和学术界同仁一起,共同解决出行领域的世界级挑战。
滴滴作为受邀企业,还参加了3DV大会的展示环节,介绍了滴滴研究院在人工智能领域的黑科技。此前有报道称,目前滴滴在美国硅谷招聘数据科学家,以帮助公司进行先进技术产品的研发。
好文章,需要你的鼓励
洛杉矶建筑公司OFA Group开发了AI工具PlanAid和QikBIM,帮助建筑师解决设计和施工中的痛点。PlanAid可实时读取蓝图并标记潜在的消防安全问题和规范违规,让建筑师提前解决问题避免多轮修改。QikBIM能自动生成工程示意图,大幅缩短项目时间。此外,Spacely.ai、Planner 5D等AI室内设计工具也让用户能够虚拟预览空间改造效果,将创意想法转化为可视化现实。
DeepSeek-AI团队通过强化学习技术开发出DeepSeek-R1系列推理模型,无需人工标注即可自主学习复杂推理。该模型在数学、编程等领域表现卓越,在AIME 2024中达到79.8%准确率,编程能力超越96%人类选手。研究团队还通过知识蒸馏技术将推理能力传递给小模型,使7B参数模型也能超越GPT-4o。这项突破为AI推理能力发展开辟新路径。
在Meta Connect大会上,Meta展示了新一代Ray-Ban智能眼镜的硬件实力,配备神经腕带支持手势控制,电池续航翻倍,摄像头性能提升。然而AI演示却频频失败,包括Live AI烹饪指导、WhatsApp通话和实时翻译功能都出现问题。尽管Meta在智能眼镜硬件方面表现出色,但AI软件仍远未达到扎克伯格提出的"超级智能"目标。文章建议Meta考虑开放AI生态,允许用户选择其他AI服务商,这可能帮助Meta在AI硬件市场获得优势。
微软研究院推出rStar-Math系统,通过创新的"深度思考"训练方法,让小型AI模型在数学推理能力上达到甚至超越OpenAI o1水平。该系统采用代码验证、过程偏好模型和四轮自进化训练,将70亿参数模型的数学能力从58.8%提升至90.0%,在美国数学奥林匹克竞赛中达到前20%水平,证明了精巧方法比模型规模更重要,为AI发展开辟了新路径。