在特拉维夫医疗中心,一位年轻的患者被诊断出患有罕见的癌症,数月来一直饱受疼痛和活动受限的困扰:核磁共振成像显示,肩胛骨(肩胛骨)广泛受损,侵袭性肿瘤浸润周围肌肉。前方是一条充满挑战的道路,当务之急是切除受影响的骨骼,同时尽可能保留肩部功能。
患者最初接受了化疗以缩小肿瘤,但仍有必要进行肩胛骨全切除术。 面对可能使患者失去肩部功能的手术,特拉维夫医疗中心专家与PTC 和 Hexagon 的团队选择了另一条道路:他们将设计并植入一个定制的 3D 打印钛合金肩胛骨,并根据患者的独特解剖结构进行制作。这种方法不仅能恢复患者的活动能力,还有助于重新定义未来复杂骨骼手术的治疗方案。
而植入物设计的基本要求和挑战很多,其中包括:
(1)保留患者原有的解剖体积、形状和运动学特征。
(2)优化植入物的机械性能,同时尽量减轻重量。
(3)为肌肉连接提供一组最佳锚点。
(4)采用先进的晶格结构,促进结缔组织和肌肉的生长,利用 Creo 设计金属增材制造技术最大限度地减少支撑和变形。
(5)采用最小表面,确保关节运动平稳。
(6)利用先进的机械模拟,验证植入物在肩部和手臂运动时的承重能力。
(7)确保植入物的可制造性并减少打印试验,利用 Simufact Additive 模拟并补偿在打印过程中导致部件变形的热机械过程。
(8)利用 VGSTUDIO MAX 处理 CT 扫描数据并验证复杂结构的质量和打印金属的特性,从而验证成功打印的质量,以获得认证。
显然,PTC 和 Hexagon 的团队此刻需要找到一种方法,为这名年轻的癌症患者定制肩胛骨植入物。 而该项目需要极高的精度来解决复杂的问题,团队需要找出一种方法,在解剖、医疗、工程、制造和认证限制之间实现理想的平衡。
在特拉维夫医疗中心专家的指导下,PTC 和 Hexagon团队利用 Creo 快速成型制造和高保真模拟设计工具的强大功能,成功制作出完全个性化的肩胛骨植入物,并利用 Hexagon 的技术成功制造和认证了该植入物。
手术按计划进行,个性化植入体与患者的解剖结构完美契合。 通过 Creo 设计和 Hexagon 认证工具实现的精确定制部件在患者的快速康复中发挥了关键作用,使她能够在几天内开始恢复活动能力,这也是植入物所蕴含的卓越工程技术的最好证明。 如今,患者正在进行康复治疗,功能得到了恢复,生活质量也得到了提高。
特拉维夫苏拉斯基医疗中心(Tel Aviv Sourasky Medical Center)外科创新和三维打印部门负责人Solomon Dadia博士强调了这些进步的意义: “生物活性打印植入物是植入物的未来! 复杂的可植入打印材料的开发,加上强大的增材制造和模拟软件,使我们能够将智能植入物引入外科领域。 这些植入物与组织相互作用,优化其在体内的存活,确保完美贴合并促进组织生长。 这些进步标志着个性化医疗进入了一个新时代。
病人的快速康复凸显了个性化医疗解决方案的深远影响,而在医学、工程和技术的突破性融合中,来自特拉维夫医疗中心、PTC 和 Hexagon 的世界级团队实现了一项医学突破:特拉维夫医疗中心在以患者为中心的护理方面处于领先地位,为开创性外科技术设定了标准;PTC引领数字化转型,实现个性化医疗解决方案的突破;海克斯康(Hexagon) 利用数字孪生技术预测和改进制造流程,推动高质量部件的快速交付。
这项合作也为重新定义个性化医疗做出了贡献,它整合了数字技术,创造出支持软组织高效生长的个性化解决方案。 对于面临复杂骨骼癌症的患者来说,这标志着一个新的曙光——创新技术与体贴入微的医疗服务的结合。其中,利用Creo实现跨学科合作为每位患者量身定制解决方案,将成为重塑医疗保健的下一个前沿领域。
好文章,需要你的鼓励
Coursera在2025年连接大会上宣布多项AI功能更新。10月将推出角色扮演功能,通过AI人物帮助学生练习面试技巧并获得实时反馈。新增AI评分系统可即时批改代码、论文和视频作业。同时引入完整性检查和监考系统,通过锁定浏览器和真实性验证打击作弊行为,据称可减少95%的不当行为。此外,AI课程构建器将扩展至所有合作伙伴,帮助教育者快速设计课程。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
英国政府研究显示,神经多样性员工从AI聊天机器人中获得的收益远超普通同事。在Microsoft 365 Copilot试点中,神经多样性员工满意度达90%置信水平,推荐度达95%置信水平,均显著高于其他用户。患有ADHD和阅读障碍的员工表示AI工具为他们提供了前所未有的工作支持,特别是在报告撰写方面。研究表明,AI工具正在填补传统无障碍技术未能解决的职场差距,为残障人士提供了隐形的工作辅助。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。