生成式AI的发展让算力迎来了高光时刻,但不能忽视存储在其中的作用。
在经历了两年的下滑后,存储市场在2024年开始重新回到正轨。生成式AI为存储行业带来了一些机会,也带来一些挑战。
由于AI应用与传统数据处理方式有着显著区别,传统的存储架构已无法应对这些要求。更大容量、更高带宽、更低延迟,更低功耗,促使存储也要做出一些变革。
首先,速度是个老大难问题,当AI模型需要迅速生成创意时,却因为数据存取缓慢而“卡壳”,这无疑是一个令人沮丧的体验;
其次,存储容量的问题也不容小觑,生成式AI需要海量数据进行训练,传统存储在面对这些庞大的数据集时,往往感到无能为力;
最后,存储系统的可扩展性也让许多企业感到困惑,面对不断增长的数据需求,怎样迅速调整以跟上步伐,成为一大挑战。
大家也是八仙过海,各显其能。
SSD凭借其超快的速度和可靠性,由于生成式AI需要迅速访问和处理大量数据,SSD减少了数据存取过程中可能出现的瓶颈。云存储的灵活性也让企业能够根据需求动态扩展存储资源。当然传统的机械硬盘也有一席之地,在大模型的训练过程中,机械硬盘也可以在多个环节提供相应的支撑,其性价比仍然具有优势。
存储系统与生成式AI之间的协作将更加紧密,高效的存储解决方案将直接影响AI模型的训练和运行效率,确保海量数据能够快速存取、处理与分析,并能应对大模型时代的复杂需求。本期《数字化转型方略》我们将从芯片技术、硬盘选择、企业级存储产品以及云平台的应用,深入探讨生成式AI时代存储架构的变革。
未来随着生成式AI在各个行业的广泛应用,存储将不再是一个孤立的环节,而是成为了推动AI发展的核心组成部分。
《数字化转型方略》2024年第9期:http://www.zhiding.cn/dxinsight/2409
好文章,需要你的鼓励
迪士尼研究院开发了一种让双足机器人学会优雅跌倒的新技术。通过强化学习,机器人能够在跌倒时既减少冲击力保护关键部件,又达到用户指定的艺术化姿势。
土耳其中东技术大学研究团队开发出TimesNet-Gen人工智能系统,能够学习不同地点的地质特征并生成逼真的地震波形。该系统通过分析历史地震数据,为每个监测站建立独特的"地震指纹",在专业评估中获得0.93分高分,显著优于传统方法。这项技术为建筑抗震设计、地震预警系统和风险评估等领域提供了重要工具。
微软开始在最新Windows 11预览版中推出模型上下文协议(MCP)原生支持的公开预览,这使其备受瞩目的"智能代理操作系统"愿景更接近现实。该更新包含文件资源管理器和Windows设置两个连接器,允许AI代理在用户同意下访问本地文件和修改设备设置。尽管功能强大,微软仍需应对用户对其AI野心的不安和不信任情绪。
这项香港科技大学等机构的联合研究提出了SQ-format数据格式,通过混合精度处理实现了大语言模型性能的显著提升。该技术能智能识别模型中的关键信息并分配相应的处理精度,在几乎不损失准确性的前提下将运行速度提升近一倍。研究包含完整的算法设计、硬件实现方案和大量实验验证,为未来AI加速器的软硬件协同设计提供了重要参考。