生成式AI的发展让算力迎来了高光时刻,但不能忽视存储在其中的作用。
在经历了两年的下滑后,存储市场在2024年开始重新回到正轨。生成式AI为存储行业带来了一些机会,也带来一些挑战。
由于AI应用与传统数据处理方式有着显著区别,传统的存储架构已无法应对这些要求。更大容量、更高带宽、更低延迟,更低功耗,促使存储也要做出一些变革。
首先,速度是个老大难问题,当AI模型需要迅速生成创意时,却因为数据存取缓慢而“卡壳”,这无疑是一个令人沮丧的体验;
其次,存储容量的问题也不容小觑,生成式AI需要海量数据进行训练,传统存储在面对这些庞大的数据集时,往往感到无能为力;
最后,存储系统的可扩展性也让许多企业感到困惑,面对不断增长的数据需求,怎样迅速调整以跟上步伐,成为一大挑战。
大家也是八仙过海,各显其能。
SSD凭借其超快的速度和可靠性,由于生成式AI需要迅速访问和处理大量数据,SSD减少了数据存取过程中可能出现的瓶颈。云存储的灵活性也让企业能够根据需求动态扩展存储资源。当然传统的机械硬盘也有一席之地,在大模型的训练过程中,机械硬盘也可以在多个环节提供相应的支撑,其性价比仍然具有优势。
存储系统与生成式AI之间的协作将更加紧密,高效的存储解决方案将直接影响AI模型的训练和运行效率,确保海量数据能够快速存取、处理与分析,并能应对大模型时代的复杂需求。本期《数字化转型方略》我们将从芯片技术、硬盘选择、企业级存储产品以及云平台的应用,深入探讨生成式AI时代存储架构的变革。
未来随着生成式AI在各个行业的广泛应用,存储将不再是一个孤立的环节,而是成为了推动AI发展的核心组成部分。
《数字化转型方略》2024年第9期:http://www.zhiding.cn/dxinsight/2409
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。