随着生成式人工智能(GenAI)风靡全球,大多数企业都希望利用人工智能(AI)技术进行创新,以收获更多的业务成果。为支持业务,中国的首席信息官(CIO)通常将节约成本和提高收入作为数字化转型的主要目标,并期望AI工具的采用能够支持这些目标的实现。
然而,企业往往更着眼于通过GenAI等技术来颠覆游戏规则、带来巨大影响力,却忽略了简单的日常型AI也能带来为企业带来很多机会,比如帮助企业提高运营速度和效率。根据Gartner生成式人工智能2024年规划调研,49%在生产环境中实施GenAI并正在跟踪结果的职能部门领导者表示,生产力提高是他们使用GenAI实现的最大收益。
在中国部署数字技术的CIO可以通过以下三大策略,为新一波GenAI工具做好准备,从而推动生产力的提高。
使用“生产力区域”评估日常型AI的价值
根据2022年Gartner中国AI调研,当涉及AI领域的中国领导者被问及引入AI的主要目标时,44%选择了削减成本,而28%选择了增加营收。对GenAI以及更广泛的AI或任何技术来说,其价值衡量和价值实现通常体现在一个具体用例、领域或行业上。
尽管生产力指标通常可以预测未来价值,但大部分成果并不能直接体现为财务上的收益,比如立即降低成本。在短期内使用矩阵计算这些指标具有挑战性,需要耐心进行长期转型。要确定GenAI对信息工作者生产力的影响,就需要了解集体工作活动。
由于以信息为中心的工作并非严格的任务驱动型,因此要更好地评估个人和团队的生产力,可以在任务之外将所有生产力相关的活动纳入评估范围。图1说明了企业如何将生产力指标扩展到以信息为中心的工作中常见的“生产力区域”。对于以信息和知识为中心的工作来说,将工作模式定义为“区域”不仅可以节省时间,还有助于确定可以改进的方面。
图1:适用于信息工作的通用生产力区域

确定GenAI带来的速赢机会
GenAI正在迅速成为各种数字办公场所应用的嵌入式功能。中国的供应商迫切希望在应用中推出合规的GenAI功能、服务和产品。鉴于中国市场的独特格局,供应商应确保引入的日常型AI功能符合中国的用户模式。
企业可以从评估GenAI带来的速赢机会开始,在现有应用中提供以下GenAI功能,增强员工的日常工作活动:
CIO应该从这些应用入手,而非复杂的大语言模型。同时,GenAI的功能和用例仍处于新兴阶段,尚未实现广泛采用且效果验证仍不明确。CIO应制定长期AI战略,探索新兴趋势和有效方法,以增强当前对应用的使用,发现新机会和改进领域。
实施AI治理,实现高效且负责任的AI使用
根据微软和领英的《2024年度工作趋势指数报告》,AI在知识型员工中使用广泛,而其中部分采用是自发的,这导致新的风险也随之进入数字办公场所。使用自有AI工具可能会带来泄露敏感信息的风险。此类风险因子应定期解决、管理和检测。CIO应与企业各部门的利益相关方合作,确保企业对AI的使用进行适当的管理。
企业应教育员工了解GenAI应用的潜在风险,以确保负责任和合乎道德地使用GenAI技术。这对于有效实现风险管理战略至关重要,也是AI素养地重要组成部分。
好文章,需要你的鼓励
微软正式确认配置管理器将转为年度发布模式,并将Intune作为主要创新重点。该变化将于2026年秋季生效,在此之前还有几个版本发布。微软表示此举是为了与Windows客户端安全和稳定性节奏保持一致,优先确保安全可靠的用户体验。配置管理器将专注于安全性、稳定性和长期支持,而所有新功能创新都将在云端的Intune中进行。
这项由圣母大学和IBM研究院联合开展的研究,开发出了名为DeepEvolve的AI科学助手系统,能够像人类科学家一样进行深度文献研究并将创新想法转化为可执行的算法程序。该系统突破了传统AI要么只能改进算法但缺乏创新、要么只能提出想法但无法实现的局限,在化学、生物学、数学等九个科学领域的测试中都实现了显著的算法性能提升,为AI辅助科学发现开辟了新的道路。
人工智能初创公司aiOla推出基于流匹配训练技术的语音AI模型Drax,挑战OpenAI和阿里巴巴等巨头。该模型重新定义语音算法训练方式,能在嘈杂环境中准确识别语音,兼顾速度与准确性。相比OpenAI的Whisper和阿里巴巴Qwen2,Drax采用并行流处理技术,速度提升32倍,词错误率仅7.4%。该模型已在GitHub开源,提供三种规模版本。
卡内基梅隆大学研究团队通过3331次大规模实验,系统揭示了代码训练如何提升AI推理能力。研究发现,代码的结构特性比语义内容更重要,适当的抽象形式(如伪代码)可以达到与原始代码相同的效果。不同编程语言产生差异化影响:低抽象语言有利于数学推理,Python更适合自然语言任务。这些发现为AI训练数据的科学化设计提供了重要指导。