当前,许多企业机构都在全力推进生成式人工智能(GenAI)解决方案的设计和实施,希望提升解决方案的通用性和创造性,进而推动业务价值。2023年Gartner企业人工智能(AI)调研揭示了GenAI用例的三种最主要的实现方法,74%的受访者通过对现有GenAI模型进行定制化调整来满足自身用例的需求,65%的受访者尝试自行训练定制GenAI模型。
然而,实施GenAI绝非易事。对于创造性和通用性的追求,往往会增加GenAI解决方案的复杂性、不确定性和生成非预期结果的可能性,而这也成为了GenAI企业采用面临的主要问题。GenAI解决方案的创造性和通用性越强,出现非预期行为和输出(如幻觉、有害内容超出应用范围的内容等)的可能性越高(见图1)。

图1:在创造性与通用性之间取得平衡
选择基于GenAI模型自行构建GenAI解决方案的企业机构,其负责AI工作的数据和分析(D&A)领导者应利用开源护栏、商业护栏和自建护栏这三种护栏工具来控制GenAI模型的输入和输出,验证并矫正GenAI模型的输入和输出,提高模型的可靠性。
评估并优化GenAI解决方案的创造性和通用性
GenAI模型可兼具创造性和通用性。企业机构通常需要在广泛的场景中使用GenAI解决方案,而这些场景对于解决方案创造性和通用性的需求各不相同。因此,必须根据部署目的和具体场景下的功能需求,确定GenAI解决方案的定位,并根据在创造性和通用性两个方面的具体需求,利用护栏工具建立控制策略和机制。
负责AI工作的D&A领导者应基于GenAI解决方案的使用场景和方式,确定相应的业务风险容忍度,具体取决于:
而后,应根据业务风险容忍度,利用护栏工具管理模型输入和输出,建立严格或宽松的控制机制,并最终在创造性和通用性之间取得最佳平衡。
利用模型护栏验证和矫正模型的输入和输出
使用护栏工具,是管理GenAI模型创造性和通用性的一个切实可行的方法。护栏(在GenAI模型和应用与最终用户之间建立防护层)可以监控和管理模型的全部流量,包括用户输入和模型/应用输出(见图2)。

图2:护栏部署在用户与GenAI模型之间
以下是两种典型护栏:
需要注意的是,护栏并非“灵丹妙药”,不能完全解决GenAI解决方案的行为和准确性问题。GenAI解决方案必须在准确性与企业机构的风险承受能力之间取得平衡。
此外,伴随GenAI的快速发展,护栏技术也在不断变化和改进。鉴于神经网络的不可预测性,护栏技术目前是验证和矫正GenAI模型输出的一种切实可行的方法。长期来看,在基础GenAI模型变得足够可靠和可信之前,护栏提供了一种过渡解决方案,可以帮助企业机构推动GenAI采用。
好文章,需要你的鼓励
Adobe研究院与UCLA合作开发的Sparse-LaViDa技术通过创新的"稀疏表示"方法,成功将AI图像生成速度提升一倍。该技术巧妙地让AI只处理必要的图像区域,使用特殊"寄存器令牌"管理其余部分,在文本到图像生成、图像编辑和数学推理等任务中实现显著加速,同时完全保持了输出质量。
谷歌发布基于Gemini 3的快速低成本模型Flash,并将其设为Gemini应用和AI搜索的默认模型。新模型在多项基准测试中表现优异,在MMMU-Pro多模态推理测试中得分81.2%超越所有竞品。该模型已向全球用户开放,并通过Vertex AI和API向企业及开发者提供服务。定价为每百万输入token 0.5美元,输出token 3美元,速度比2.5 Pro快三倍且更节省token用量。
香港科技大学团队开发出A4-Agent智能系统,无需训练即可让AI理解物品的可操作性。该系统通过"想象-思考-定位"三步法模仿人类认知过程,在多个测试中超越了需要专门训练的传统方法。这项技术为智能机器人发展提供了新思路,使其能够像人类一样举一反三地处理未见过的新物品和任务。