当前,许多企业机构都在全力推进生成式人工智能(GenAI)解决方案的设计和实施,希望提升解决方案的通用性和创造性,进而推动业务价值。2023年Gartner企业人工智能(AI)调研揭示了GenAI用例的三种最主要的实现方法,74%的受访者通过对现有GenAI模型进行定制化调整来满足自身用例的需求,65%的受访者尝试自行训练定制GenAI模型。
然而,实施GenAI绝非易事。对于创造性和通用性的追求,往往会增加GenAI解决方案的复杂性、不确定性和生成非预期结果的可能性,而这也成为了GenAI企业采用面临的主要问题。GenAI解决方案的创造性和通用性越强,出现非预期行为和输出(如幻觉、有害内容超出应用范围的内容等)的可能性越高(见图1)。

图1:在创造性与通用性之间取得平衡
选择基于GenAI模型自行构建GenAI解决方案的企业机构,其负责AI工作的数据和分析(D&A)领导者应利用开源护栏、商业护栏和自建护栏这三种护栏工具来控制GenAI模型的输入和输出,验证并矫正GenAI模型的输入和输出,提高模型的可靠性。
评估并优化GenAI解决方案的创造性和通用性
GenAI模型可兼具创造性和通用性。企业机构通常需要在广泛的场景中使用GenAI解决方案,而这些场景对于解决方案创造性和通用性的需求各不相同。因此,必须根据部署目的和具体场景下的功能需求,确定GenAI解决方案的定位,并根据在创造性和通用性两个方面的具体需求,利用护栏工具建立控制策略和机制。
负责AI工作的D&A领导者应基于GenAI解决方案的使用场景和方式,确定相应的业务风险容忍度,具体取决于:
而后,应根据业务风险容忍度,利用护栏工具管理模型输入和输出,建立严格或宽松的控制机制,并最终在创造性和通用性之间取得最佳平衡。
利用模型护栏验证和矫正模型的输入和输出
使用护栏工具,是管理GenAI模型创造性和通用性的一个切实可行的方法。护栏(在GenAI模型和应用与最终用户之间建立防护层)可以监控和管理模型的全部流量,包括用户输入和模型/应用输出(见图2)。

图2:护栏部署在用户与GenAI模型之间
以下是两种典型护栏:
需要注意的是,护栏并非“灵丹妙药”,不能完全解决GenAI解决方案的行为和准确性问题。GenAI解决方案必须在准确性与企业机构的风险承受能力之间取得平衡。
此外,伴随GenAI的快速发展,护栏技术也在不断变化和改进。鉴于神经网络的不可预测性,护栏技术目前是验证和矫正GenAI模型输出的一种切实可行的方法。长期来看,在基础GenAI模型变得足够可靠和可信之前,护栏提供了一种过渡解决方案,可以帮助企业机构推动GenAI采用。
好文章,需要你的鼓励
本文揭示了AI时代CIO的七项关键行为特征,基于对多位CIO和AI专家的深度访谈。专家指出,AI精通的CIO需具备实用AI素养、战略视野和变革领导力,能将技术与业务战略对齐,建立强大数据治理基础。文章详细解析了分析型AI、生成式AI和智能体AI三大技术领域,强调数据基础的重要性,并提出CIO应从项目思维转向产品思维,通过跨职能团队实现端到端价值交付。
斯坦福大学等机构联合开发的CIFT系统首次解决了机器人"近视眼"问题,通过精确控制真实数据和合成数据的混合比例,让机器人在陌生环境中的表现提升54%以上。该系统包含多视角视频增强引擎MVAug和数据组合优化策略,能够预测数据失效的"去相干点",确保机器人学习真正重要的任务特征而非环境表象,为实用化通用机器人奠定了重要基础。
尽管苹果在AI竞赛中看似落后,但其私有云计算基础设施展现了技术优势。当行业为追赶大语言模型而降低隐私标准时,苹果坚持原则,开发出保护用户数据隐私的技术方案。谷歌最新宣布的类似实施方案验证了苹果技术路线的正确性,这可能推动其他AI实验室采用相同做法,为用户隐私带来重大胜利。
香港中文大学研究团队开发的Search-R3系统成功解决了大语言模型推理与搜索分离的问题,通过两阶段训练让AI在深度思考过程中直接生成搜索向量。该系统在多个领域测试中显著超越现有方法,特别是启用推理后性能提升明显,为AI系统设计提供了推理与搜索统一的新范式,展现了从专门化向通用化发展的重要方向。