Gartner预测,到2025年底,至少有30%的生成式人工智能(GenAI)项目将在概念验证后被放弃,原因包括数据质量差、风险控制不足、成本上升、业务价值不明确等。
在近期举行的Gartner数据与分析峰会上,Gartner杰出研究副总裁Rita Sallam表示:“经过去年的炒作,企业高管已迫不及待地想要看到GenAI投资的回报,但企业机构目前还难以证明和实现这些投资的价值。而随着行动范围的扩大,开发和部署GenAI模型所带来的经济负担越来越重。”
Gartner认为,企业机构所面临的一大挑战是证明为提高生产力而大力投资于GenAI的合理性。然而,这些投资很难直接转化为经济效益。许多企业机构正在使用GenAI深入改变其业务模式和创造新的商机,但GenAI部署方法的成本高达500万美元至2000万美元(见图一)。
图一、不同GenAI 部署方法的成本
资料来源:Gartner(2024 年 7 月)
Sallam表示:“不幸的是,目前还没有万能的GenAI部署方法,成本也不像其他技术那样可以预测。你的花费、所投资的用例以及采取的部署方法都决定了成本的高低。无论你是希望将人工智能(AI)应用于各个方面的市场颠覆者,还是较为保守地专注于提高生产力或扩展现有流程,都会产生不同程度的成本、风险、变数和战略影响。”
Gartner的研究表明,无论AI目标的大小如何,GenAI 都要求企业对间接的、未来的财务投资标准有更高的容忍度,而不是追求立竿见影的投资回报率(ROI)。一直以来,许多首席财务官都不愿意为了未来的间接价值而在当下做出投资。这种不情愿会使投资分配偏向于短期战术成果而非长期战略成果。
实现业务价值
各个行业和业务流程的早期用户均实现了业务改进,改进的程度因用例、工作类型和员工技能水平而异。Gartner最近的一项调查显示,受访者的收入平均增加了15.8%,成本平均节约了15.2%,生产力平均提高了22.6%。这项调查于2023年9月至11月期间对822位企业领导人开展。
Salim表示:“这些数据为评估GenAI业务模式创新带来的业务价值提供了宝贵的参考依据。但重点在于要认识到由于收益与公司、用例、角色和员工密切相关而给估算这一价值所带来的挑战。虽然通常情况其效果可能不会立竿见影,而是会逐渐显现,但这一延迟不会减少潜在的收益。”
计算业务影响
Gartner 认为,企业可以通过分析GenAI业务模式创新的业务价值和总成本,确定直接投资回报率和未来价值影响。这是在GenAI业务模式创新方面做出明智投资决策的重要方法。
Sallam表示:“如果业务成果达到或超过预期,就有机会将GenAI创新和使用推广到更大的用户群中或者在其他业务部门实施,从而扩大投资规模。但如果达不到预期,就可能需要探索其他创新场景。像这样的洞察有助于企业机构实现资源的战略分配并确定最有效的发展路径。”
Gartner客户可在报告《计算GenAI业务模式创新的投资回报率》以及免费的Gartner网络研讨会“成熟组织为取得AI成功所采取的不同做法”中了解更多信息。
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
谷歌DeepMind团队开发的GraphCast是一个革命性的AI天气预测模型,能够在不到一分钟内完成10天全球天气预报,准确性超越传统方法90%的指标。该模型采用图神经网络技术,通过学习40年历史数据掌握天气变化规律,在极端天气预测方面表现卓越,能耗仅为传统方法的千分之一,为气象学领域带来了效率和精度的双重突破。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
韩国成均馆大学研究团队开发了首个机器遗忘可视化评估系统Unlearning Comparator,解决了AI"选择性失忆"技术缺乏标准化评估的问题。系统通过直观界面帮助研究人员深入比较不同遗忘方法,并基于分析洞察开发出性能优异的引导遗忘新方法,为构建更负责任的AI系统提供重要工具支持。