过去一年,生成式人工智能(GenAI)的采用率呈爆炸式增长。2023年Gartner企业机构AI调研发现,GenAI是受访企业部署最广泛的AI技术之一。企业机构在多个业务部门的多种用例中部署了GenAI。尽管这一快速部署前景广阔,但也带来了由于过度聚焦于GenAI而导致AI领域其他应用被忽视的风险。而实际上,GenAI仅占AI版图的一小部分。与此同时,GenAI也不是万灵丹,对于大多数AI用例来说,往往并不适用。此外,许多业务问题需要结合使用不同的AI技术来解决。
因此,企业IT领导者应当充分评估GenAI是否适用于企业用例、何时应考虑其他AI技术,以及何时应将其他AI技术与GenAI结合使用。
评估GenAI是否适用于企业用例
是否应使用GenAI模型,需要具体情况具体分析。无论考虑使用哪种AI技术,第一步都要确定用例本身具备的价值和可行性。目前,GenAI模型并不适合单独用于预测和预报、规划和优化、决策智能和自治系统等类别中的用例。GenAI可能不适合企业用例的更主要的原因是,GenAI带来的风险是不可接受的,并且无法有效缓解。GenAI的特定风险包括输出不可靠、数据隐私、知识产权、责任、网络安全和监管合规。每个用例都需要考虑这些因素。
IT领导者可以在使用Gartner的AI棱镜等优先级排序工具对用例进行优先级排序后,将这些用例与图1中的相关用例类别相对应,对每个类别可使用的GenAI模型目前的实用性进行评级。
图1:用例类别与生成式模型的相对实用性
考虑可替代GenAI的其他AI技术
现有和成熟AI技术的注意力被GenAI分散;而实际上,其他AI技术或技术组合,可能才最适合用于支持特定用例。
企业IT领导者可以使用图2判断企业用例的相关类别,并且了解当前最适用于此类用例的替代AI技术。图2介绍了一些应用最为广泛的AI技术(包括非生成式机器学习、优化、模拟、基于规则的系统和图谱等),就给定用例中用作主要技术的各种AI替代方案的潜在实用性提供了指导意见。
图2:AI技术热图
对于许多用例来说,这些替代技术比GenAI模型更有效、更可靠、更易于理解。对于特定用例来说,考虑可解释性、性能和可靠性方面的需要十分重要。GenAI模型往往比其他技术更不可靠、更难以解释。一开始先尝试使用更简单的替代AI技术可能是个好主意,因为风险和成本更低,且更容易理解。
结合使用GenAI模型与其他AI技术
AI技术并非互不兼容;这些技术往往可以结合使用,构成更为强大的整体系统。一方面,与更稳定可靠的技术相结合,有助于应对GenAI模型的一些局限性——缺乏鲁棒性、信息不准确和产生幻觉等。另一方面,GenAI模型可以成为成熟技术的额外补充。GenAI模型发挥作用的普遍方式是作为与其他AI/软件系统的自然语言接口。与此类似,GenAI可用于开发之后可在非生成式机器学习模型中使用的功能。
AI技术的潜在组合方式不胜枚举。能够结合使用合适AI技术的企业具有独特优势,可构建更精确、更透明、性能更好的AI系统,同时还能降低成本和减少对数据的需求。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。