过去一年,生成式人工智能(GenAI)的采用率呈爆炸式增长。2023年Gartner企业机构AI调研发现,GenAI是受访企业部署最广泛的AI技术之一。企业机构在多个业务部门的多种用例中部署了GenAI。尽管这一快速部署前景广阔,但也带来了由于过度聚焦于GenAI而导致AI领域其他应用被忽视的风险。而实际上,GenAI仅占AI版图的一小部分。与此同时,GenAI也不是万灵丹,对于大多数AI用例来说,往往并不适用。此外,许多业务问题需要结合使用不同的AI技术来解决。
因此,企业IT领导者应当充分评估GenAI是否适用于企业用例、何时应考虑其他AI技术,以及何时应将其他AI技术与GenAI结合使用。
评估GenAI是否适用于企业用例
是否应使用GenAI模型,需要具体情况具体分析。无论考虑使用哪种AI技术,第一步都要确定用例本身具备的价值和可行性。目前,GenAI模型并不适合单独用于预测和预报、规划和优化、决策智能和自治系统等类别中的用例。GenAI可能不适合企业用例的更主要的原因是,GenAI带来的风险是不可接受的,并且无法有效缓解。GenAI的特定风险包括输出不可靠、数据隐私、知识产权、责任、网络安全和监管合规。每个用例都需要考虑这些因素。
IT领导者可以在使用Gartner的AI棱镜等优先级排序工具对用例进行优先级排序后,将这些用例与图1中的相关用例类别相对应,对每个类别可使用的GenAI模型目前的实用性进行评级。
图1:用例类别与生成式模型的相对实用性
考虑可替代GenAI的其他AI技术
现有和成熟AI技术的注意力被GenAI分散;而实际上,其他AI技术或技术组合,可能才最适合用于支持特定用例。
企业IT领导者可以使用图2判断企业用例的相关类别,并且了解当前最适用于此类用例的替代AI技术。图2介绍了一些应用最为广泛的AI技术(包括非生成式机器学习、优化、模拟、基于规则的系统和图谱等),就给定用例中用作主要技术的各种AI替代方案的潜在实用性提供了指导意见。
图2:AI技术热图
对于许多用例来说,这些替代技术比GenAI模型更有效、更可靠、更易于理解。对于特定用例来说,考虑可解释性、性能和可靠性方面的需要十分重要。GenAI模型往往比其他技术更不可靠、更难以解释。一开始先尝试使用更简单的替代AI技术可能是个好主意,因为风险和成本更低,且更容易理解。
结合使用GenAI模型与其他AI技术
AI技术并非互不兼容;这些技术往往可以结合使用,构成更为强大的整体系统。一方面,与更稳定可靠的技术相结合,有助于应对GenAI模型的一些局限性——缺乏鲁棒性、信息不准确和产生幻觉等。另一方面,GenAI模型可以成为成熟技术的额外补充。GenAI模型发挥作用的普遍方式是作为与其他AI/软件系统的自然语言接口。与此类似,GenAI可用于开发之后可在非生成式机器学习模型中使用的功能。
AI技术的潜在组合方式不胜枚举。能够结合使用合适AI技术的企业具有独特优势,可构建更精确、更透明、性能更好的AI系统,同时还能降低成本和减少对数据的需求。
好文章,需要你的鼓励
随着大语言模型在人工智能时代展现强大力量,可穿戴设备成为收集人体数据的重要载体。通过实时监测血压、心率、血糖等生命体征,结合AI边缘计算能力,医疗正向个性化转型。基因治疗、数字孪生技术让每个人都能拥有专属的医疗数字化身,实现从"报销型医疗"向"创新循证医疗"的转变,为疾病预防和健康管理带来革命性突破。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
在巴黎举办的欧洲开放基础设施峰会期间,专门用一整天时间讨论VMware迁移问题。博通收购VMware后许可证价格上涨,导致客户运营成本大幅增加。开源开发者展示了将VMware虚拟机迁移到开源替代方案的产品。Forrester分析师指出VMware客户对此感到信任破裂。OpenStack等开源解决方案虽然复杂度较高,但提供了健康的开源生态系统替代方案。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。