在近期举办的2024中国科技行业高管交流大会上,Gartner发布了关于生成式人工智能(GenAI)安全的最新研究。随着GenAI技术的迅速发展和应用,全球超过58%的技术提供商已经在他们的产品中内嵌了GenAI技术。这种技术虽然为企业带来了创新的机会,但同时也引入了新的安全挑战。
Gartner高级研究总监曾劭清表示:“GenAI技术在提高业务效率和开拓新服务方面具有巨大潜力,但它也使企业的安全攻击面扩大,尤其是在提示工程和数据安全方面。GenAI技术为攻击者提供了新的途径,例如利用AI生成的内容进行社会工程攻击或通过污染训练数据来破坏AI系统的完整性。此外,攻击者可以利用GenAI提高攻击工具的自动化和智能化水平,这对传统的安全防御措施构成了挑战。同时,GenAI系统的复杂性本身也可能引入新的漏洞和弱点,要求企业采用更先进的技术和策略来确保系统的安全。”
随着GenAI技术融入日常业务操作,企业面临的攻击面显著扩大。这不仅影响到数据处理,还直接威胁到AI模型的安全性。为了应对这些挑战,企业必须采取先进的安全措施和技术。这包括但不限于实施综合的数据监控系统、加强训练数据的安全性,以及部署专门的安全解决方案来保护AI模型免受操纵和攻击。更重要的是,企业需要在AI开发和部署的每个阶段整合安全最佳实践,确保从设计之初就考虑到安全因素。
曾劭清指出:“在快速发展的GenAI领域,仅靠被动式的安全防卫已无法满足保护需求。企业必须在AI系统的设计和运营过程中,建立自动移动目标防御体系,以防范可能的安全威胁。这种前瞻性的安全策略是保护企业不受新兴技术风险侵害的关键。”
与此同时,攻击者正利用GenAI的能力来提升其攻击精细化和效率,对传统安全防御体系构成新的挑战。攻击者利用GenAI进行更加自动化和智能化的攻击,不仅提高了攻击效率,也增加了攻击的隐蔽性和复杂性。为了应对这些挑战,企业必须采用基于AI的防御技术,这些技术能够实时监控和分析异常行为,以识别和阻止潜在的威胁。
曾劭清指出:“攻击者可以利用GenAI快速开发出新的攻击方法,这要求我们的防御系统不仅要快速响应,还要足够智能以识别和适应这些新型威胁。企业投资于AI驱动的安全解决方案,将是对抗这一新趋势的关键。”
同时,GenAI技术的普及带来了数据安全管理的复杂性,企业必须适应这种变化,以防范不断增长的安全风险。GenAI可以处理和分析大量数据,但如果不当管理,也可能导致数据泄露或被恶意利用。因此,企业需要实施严格的数据治理措施,确保所有使用AI处理的数据都符合最新的安全标准和合规要求。此外,加强对AI操作的监控和审计,确保数据的完整性和隐私保护也至关重要。
曾劭清表示:“在这个由数据驱动的时代,确保数据安全是使用GenAI技术的企业面临的一大挑战。我们必须认识到,数据不仅是一个资产,也是一个潜在的风险点。采用先进的加密技术、访问控制和实时监测系统是保护数据安全不可或缺的部分。
好文章,需要你的鼓励
从浙江安吉的桌椅,到广东佛山的沙发床垫、河南洛阳的钢制家具,再到福建福州的竹藤制品,中国各大高度专业化的家具产业带,都在不约而同地探索各自的数字化出海路径。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。