在近期举办的2024中国科技行业高管交流大会上,Gartner发布了关于生成式人工智能(GenAI)安全的最新研究。随着GenAI技术的迅速发展和应用,全球超过58%的技术提供商已经在他们的产品中内嵌了GenAI技术。这种技术虽然为企业带来了创新的机会,但同时也引入了新的安全挑战。
Gartner高级研究总监曾劭清表示:“GenAI技术在提高业务效率和开拓新服务方面具有巨大潜力,但它也使企业的安全攻击面扩大,尤其是在提示工程和数据安全方面。GenAI技术为攻击者提供了新的途径,例如利用AI生成的内容进行社会工程攻击或通过污染训练数据来破坏AI系统的完整性。此外,攻击者可以利用GenAI提高攻击工具的自动化和智能化水平,这对传统的安全防御措施构成了挑战。同时,GenAI系统的复杂性本身也可能引入新的漏洞和弱点,要求企业采用更先进的技术和策略来确保系统的安全。”

随着GenAI技术融入日常业务操作,企业面临的攻击面显著扩大。这不仅影响到数据处理,还直接威胁到AI模型的安全性。为了应对这些挑战,企业必须采取先进的安全措施和技术。这包括但不限于实施综合的数据监控系统、加强训练数据的安全性,以及部署专门的安全解决方案来保护AI模型免受操纵和攻击。更重要的是,企业需要在AI开发和部署的每个阶段整合安全最佳实践,确保从设计之初就考虑到安全因素。
曾劭清指出:“在快速发展的GenAI领域,仅靠被动式的安全防卫已无法满足保护需求。企业必须在AI系统的设计和运营过程中,建立自动移动目标防御体系,以防范可能的安全威胁。这种前瞻性的安全策略是保护企业不受新兴技术风险侵害的关键。”
与此同时,攻击者正利用GenAI的能力来提升其攻击精细化和效率,对传统安全防御体系构成新的挑战。攻击者利用GenAI进行更加自动化和智能化的攻击,不仅提高了攻击效率,也增加了攻击的隐蔽性和复杂性。为了应对这些挑战,企业必须采用基于AI的防御技术,这些技术能够实时监控和分析异常行为,以识别和阻止潜在的威胁。
曾劭清指出:“攻击者可以利用GenAI快速开发出新的攻击方法,这要求我们的防御系统不仅要快速响应,还要足够智能以识别和适应这些新型威胁。企业投资于AI驱动的安全解决方案,将是对抗这一新趋势的关键。”
同时,GenAI技术的普及带来了数据安全管理的复杂性,企业必须适应这种变化,以防范不断增长的安全风险。GenAI可以处理和分析大量数据,但如果不当管理,也可能导致数据泄露或被恶意利用。因此,企业需要实施严格的数据治理措施,确保所有使用AI处理的数据都符合最新的安全标准和合规要求。此外,加强对AI操作的监控和审计,确保数据的完整性和隐私保护也至关重要。
曾劭清表示:“在这个由数据驱动的时代,确保数据安全是使用GenAI技术的企业面临的一大挑战。我们必须认识到,数据不仅是一个资产,也是一个潜在的风险点。采用先进的加密技术、访问控制和实时监测系统是保护数据安全不可或缺的部分。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。