尽管目前存在各种炒作以及主流采用程度很高,但在走上生产力巅峰之路之前,生成式AI仍然需要经历幻灭的低谷期。
生成式AI的快速普及和民主化,有些类似于近150年前灯泡给电力领域带来的影响是一样的。1831年电问世,几十年之后在1879年灯泡问,与之类似的是,生成式AI给大众和企业也带来了实际的用例,正在给AI带来相同的影响。
当技术从实验室走进日常生活的时候,主流采用通常依赖于日益强大且经过验证的初始用例。随着如此迅速的普及,人们对于各种可能性感到非常兴奋,这就是Gartner技术成熟度曲线中,生成式AI目前正处于过高预期顶峰的其中一个原因。
事实上,去年ChatGPT仅仅用两个月就获得了超过1亿的月活跃用户,它在技术成熟度曲线中正处于经过了炒作周期的位置。现在我们正处于主流采用阶段,有近一半的人口正在使用生成式AI,但还处于期望过高的顶峰。因此仔细观察一下,我们可能仍处于生成式AI的“煤气灯时刻”,而“灯泡时刻”尚未到来。这并不是一件坏事。
在生成式AI的世界中,我们发现计算机正在以令人惊讶的方式出现错误。当我们尝试将AI应用于公共和私有数据的时候,我们正在实时了解哪些数据是有效的,哪些是无效的。
以下是CIO们关于如何驾驭生成式AI炒作周期、为从幻灭低谷期迅速过渡到启蒙的斜坡做好准备的五点建议:
对客户、员工和利益相关者保持现实态度
在宣传生成式AI和相关解决方案所具有的变革本质的同时,也请务必指出它存在的缺点。咨询公司和技术厂商经常会强调生成式AI带来的变革力量,但很少关注它的缺点。尽管如此公平地说,许多人正在努力帮助解决这些问题并推出各种平台、解决方案和工具包。
抱有现实的心态,意味着你了解了利弊,并与客户、员工和高管层的同事分享这些信息。他们也会欣赏你的坦诚。你要列出一份权威的清单,以便清楚地解释和理解这些信息。正如一些AI顾问指出的,缺点包括黑匣子问题、AI容易受到人类观点误导、幻觉的影响,等等。
制定企业使用政策
企业使用政策和相关培训可以帮助员工了解这项技术的一些风险和陷阱,并提供规则和建议,以充分利用这项技术,从而实现最大化的商业价值,而不会使组织面临风险。在制定政策时,请务必让所有相关利益相关者参与其中,考虑组织当前和未来将如何使用AI,并在整个组织内进行广泛分享。你需要让这个政策成为一份动态文件,根据需要以合适的节奏进行更新。制定这项政策有助于防范与合同、网络安全、数据隐私、欺骗性贸易行为、歧视、虚假信息、道德、知识产权和验证相关的许多风险。
评估每个用例的业务价值
在纯文本输出的情况下,我们倾向于相信生成式AI的答案,因为它们写得很好,语法也很对。从心理学上来说,我们倾向于相信幕后有强大的智能,而实际上AI并不了解什么是真什么是假。
虽然生成式AI有一些出色的用例,但我们需要根据具体情况进行审查。例如,生成式AI通常不擅长编写技术预测。输出的内容常常告诉我们一些我们已经知道的东西,而且它也可能是抄袭的。即使使用重写或改写工具也只会让事情变得更糟,而且团队最终可能会比自己编写预测内容花费更多的时间来使用这些工具。最好是有选择的余地,并且只在有明显好处的情况下使用AI。
保持严格的测试标准
由于组织中可能会有很多员工使用生成式AI,因此对员工进行培训和教育使其了解利弊并以企业使用政策作为起点,是非常重要的。随着生成式AI的广泛采用,我们实际上都是测试者,需要不断学习。
在组织内部,无论是在IT部门还是业务部门,请务必强调并在上线之前留出大量时间进行测试和实验。建立内部实践社区,员工可以分享经验和教训,也有助于提高整体意识并在整个组织内推广最佳实践。
针对技术故障制定计划
即使是不支持AI的系统也可能犯下严重的、改变生活的错误。当我们错误地认为这些系统是正确的时,可能会导致数百名工人成为错误的目标。在英国邮政局案件中,15年来有700多名邮政局长被错误地指控为欺诈,导致名誉受损、离婚甚至自杀。
因此,当AI出错时制定计划就变得至关重要。您的企业通过政策设置了护栏,但当出现问题时,IT治理流程如何监控情况并做出反应?有计划吗?你的治理流程将如何区分正确或错误的答案或决策?犯下错误会给业务带来怎样的影响?纠正错误的难易程度如何?
生成式AI将会迎来它的高光时刻,而且不会等待太久,但要等到我们先度过幻灭的低谷期,登上启蒙的斜坡,最后到达生产力的高原。一路上的煤气灯时刻、实验和学习都是这个过程的一部分。
好文章,需要你的鼓励
DeepSeek 发布了新的大语言模型系列 R1,专为推理任务优化。该系列包括两个主要模型 R1 和 R1-Zero,采用混合专家架构,拥有 6710 亿参数。R1 在多项推理基准测试中超越了 OpenAI 的 o1 模型,而 R1-Zero 则代表了机器学习研究的重大进展。DeepSeek 已在 Hugging Face 上开源了这些模型的源代码。
国家机器人研究中心与 Freshwave 公司合作,利用私有 5G 网络测试农业机器人。这项合作旨在提升农业生产力,预计到 2026 年农业科技产业规模将达到 156 亿英镑。私有 5G 网络将为农业机器人提供高速、低延迟的连接,实现实时数据分析和精准农业操作,有望彻底改变农业生产方式。
Cognizant 推出了神经 AI 多代理加速器和服务套件,旨在帮助企业快速开发和部署 AI 代理。该技术通过预构建的代理网络模板和无代码框架,实现了跨职能的可扩展性和自主决策能力。这一创新有望推动 AI 代理在企业工作流程中的广泛应用,促进人机协作,提升业务效率和适应性。
西部数据公司财务总监Wissam Jabre将于2月28日辞职,恰逢公司分拆为硬盘和固态硬盘两个独立业务。公司正在寻找新的财务总监。尽管面临闪存业务定价环境更具挑战性,公司第二财季收入预计仍将达到43亿美元,同比增长42%。分析师认为硬盘业务表现强劲,可能抵消了闪存业务的部分疲软。