企业现在意识到,摆在他们面前的工作是让他们的数据、人员和流程做好准备,以充分利用生成式AI的潜力。事实上,埃森哲最近的一项调查发现,几乎所有(99%)的高管都表示,他们计划加大对这项技术的投资。因此,领导者们需要从根本上重新思考如何完成工作。CIO们对业务流程具有跨职能的视角,再加上对如何利用技术重塑运营和交付价值的深入了解,因此他们特别具有能够帮助组织为生成式AI做好准备的能力。
然而,领导者们却在努力采取必要的后续措施来推动这项技术落地。例如,埃森哲最近的一份报告发现,有67%的高级技术领导者认为,同级高管缺乏技术敏锐度是把技术融入战略制定的主要障碍,克服这个障碍的关键是要理解生成式AI和创新,并将其与企业的成功联系起来。
将AI有效地集成到业务中,首先是要设定明确的目标来定义业务价值,并使AI战略与这些总体业务目标保持一致。很多正在负责推动企业数字化议程的CIO们已经开始把AI作为核心,利用AI解决方案来实现战略中最关键的要素。他们认识到,构建强大的基础设施是他们组织迈向企业就绪之旅重要的第一步,这将使企业能够以最大的效率和效果扩展生成式AI,并促进整个企业对这项技术的成功采用。事实上,有98%的全球高管认为,未来三到五年内AI基础模型将在其组织战略中发挥重要的作用。
那么,CIO现在可以做什么?在设计新的AI Navigator for Enterprise(一种帮助指导客户踏上AI之旅的工具)的过程中,我们明确了CIO应该问自己的这八个问题,对他们企业是否已经准备好迎接生成式AI进行压力测试:
新的拐点
技术对于每个行业来说,是实现更强劲增长、更高敏捷性和更强弹性的关键,而生成式AI是其中一个重要的差异化因素,这项技术将从根本上改变我们的工作和生活。埃森哲的研究发现,40%的工作时间会受到大型语言模型的影响。仔细观察就会发现,特别是在IT和技术角色中,总工作时间的73%是可以通过生成式AI带来改变的,这凸显了为安全地、负责任地、经济高效地、且具有商业价值的方式扩展生成式AI奠定适当基础的重要性。
CIO有一个重要的机会可以帮助他们的企业应对当今快速变化的数字环境所带来的复杂性。利用AI的突破性进步和面向整个企业的绩效方法,他们可以找到方法让技术为他们自己服务,从而重新定义自己及其所在的行业。
好文章,需要你的鼓励
浙江大学研究团队开发了ContextGen,这是首个能够同时精确控制多个对象位置和外观的AI图像生成系统。该系统通过情境布局锚定和身份一致性注意力两大创新机制,解决了传统AI在多对象场景中位置控制不准确和身份保持困难的问题,并创建了业界首个10万样本的专业训练数据集,在多项测试中超越现有技术。
谷歌推出升级版图像生成模型Nano Banana Pro,基于最新Gemini 3语言模型构建。新模型支持更高分辨率(2K/4K)、准确文本渲染、网络搜索功能,并提供专业级图像控制能力,包括摄像角度、场景光照、景深等。虽然质量更高但成本也相应增加,1080p图像费用为0.139美元。模型已集成到Gemini应用、NotebookLM等多个谷歌AI工具中,并通过API向开发者开放。
上海交通大学研究团队开发的SR-Scientist系统实现了人工智能在科学发现领域的重大突破。该系统能够像真正的科学家一样,从实验数据中自主发现数学公式,通过工具驱动的数据分析和长期优化机制,在四个科学领域的测试中比现有方法提高了6%-35%的精确度。这标志着AI从被动工具转变为主动科学发现者的重要里程碑。