企业现在意识到,摆在他们面前的工作是让他们的数据、人员和流程做好准备,以充分利用生成式AI的潜力。事实上,埃森哲最近的一项调查发现,几乎所有(99%)的高管都表示,他们计划加大对这项技术的投资。因此,领导者们需要从根本上重新思考如何完成工作。CIO们对业务流程具有跨职能的视角,再加上对如何利用技术重塑运营和交付价值的深入了解,因此他们特别具有能够帮助组织为生成式AI做好准备的能力。
然而,领导者们却在努力采取必要的后续措施来推动这项技术落地。例如,埃森哲最近的一份报告发现,有67%的高级技术领导者认为,同级高管缺乏技术敏锐度是把技术融入战略制定的主要障碍,克服这个障碍的关键是要理解生成式AI和创新,并将其与企业的成功联系起来。
将AI有效地集成到业务中,首先是要设定明确的目标来定义业务价值,并使AI战略与这些总体业务目标保持一致。很多正在负责推动企业数字化议程的CIO们已经开始把AI作为核心,利用AI解决方案来实现战略中最关键的要素。他们认识到,构建强大的基础设施是他们组织迈向企业就绪之旅重要的第一步,这将使企业能够以最大的效率和效果扩展生成式AI,并促进整个企业对这项技术的成功采用。事实上,有98%的全球高管认为,未来三到五年内AI基础模型将在其组织战略中发挥重要的作用。
那么,CIO现在可以做什么?在设计新的AI Navigator for Enterprise(一种帮助指导客户踏上AI之旅的工具)的过程中,我们明确了CIO应该问自己的这八个问题,对他们企业是否已经准备好迎接生成式AI进行压力测试:
新的拐点
技术对于每个行业来说,是实现更强劲增长、更高敏捷性和更强弹性的关键,而生成式AI是其中一个重要的差异化因素,这项技术将从根本上改变我们的工作和生活。埃森哲的研究发现,40%的工作时间会受到大型语言模型的影响。仔细观察就会发现,特别是在IT和技术角色中,总工作时间的73%是可以通过生成式AI带来改变的,这凸显了为安全地、负责任地、经济高效地、且具有商业价值的方式扩展生成式AI奠定适当基础的重要性。
CIO有一个重要的机会可以帮助他们的企业应对当今快速变化的数字环境所带来的复杂性。利用AI的突破性进步和面向整个企业的绩效方法,他们可以找到方法让技术为他们自己服务,从而重新定义自己及其所在的行业。
好文章,需要你的鼓励
阿布扎比科技创新研究院团队首次发现大语言模型生成的JavaScript代码具有独特"指纹"特征,开发出能够准确识别代码AI来源的系统。研究创建了包含25万代码样本的大规模数据集,涵盖20个不同AI模型,识别准确率在5类任务中达到95.8%,即使代码经过混淆处理仍保持85%以上准确率,为网络安全、教育评估和软件取证提供重要技术支持。
国际能源署发布的2025年世界能源展望报告显示,全球AI竞赛推动创纪录的石油、天然气、煤炭和核能消耗,加剧地缘政治紧张局势和气候危机。数据中心用电量预计到2035年将增长三倍,全球数据中心投资预计2025年达5800亿美元,超过全球石油供应投资的5400亿美元。报告呼吁采取新方法实现2050年净零排放目标。
斯坦福大学研究团队首次系统比较了人类与AI在文本理解任务中的表现。通过HUME评估框架测试16个任务发现:人类平均77.6%,最佳AI为80.1%,排名第4。人类在非英语文化理解任务中显著优于AI,而AI在信息处理任务中更出色。研究揭示了当前AI评估体系的缺陷,指出AI的高分往往出现在任务标准模糊的情况下。