数字经济是一项重要的战略举措。Gartner预测,到2025年,60%的大型企业机构会在分析、商业智能或云计算领域采用一种或多种隐私增强计算技术。到2022年,90%的企业将明确提出把信息视为一项关键的企业资产,将分析视为企业的一项基本能力。
在中国,数据共享对于发展数字经济至关重要。自2020年起,中国政府已经将数据视为继土地、劳动力、资本、技术之外的第五大生产要素。数据共享为企业带来了许多机会,让他们能够借助外部数据做出更精准的业务决策,通过数据变现创造更多收入来源,以及与合作伙伴创建更广泛的生态系统。
在迎接数据共享带来的所有这些机会时,中国企业在计划数据共享进程时,应当遵循“无例外必分享”(must share data unless)模式,同时从三件优先事项出发,重点关注数据的使用、孵化和协同(如图1所示)。
图1:企业数据共享的主要推动因素和优先考量

使用外部数据加速AI和分析的发展
随着中国企业数字化转型的加速,除交易数据外,更加多样化的数据也可被收集,包括图形、图像、音频、语言和时间序列等非扁平、异构数据。
当下应用的主流AI方法中,大多数都是基于以数据为中心的机器学习或深度学习。因此,数据作为AI的“燃料”受到高度重视。而企业机构和行业之间数据资产可用性的不平衡也直接导致数据共享进程的加快。
获得更大的数据集将极大加速人工智能的开发利用,带来新的商业机会,甚至改变未来的商业模式。数据和分析(D&A)领导者应仔细研究数据集的可用性,并与业务团队协作,发现新的商机。
将数据作为能够创造有价值、可靠且合规的收入来源的产品
共享原始数据给企业带来的价值有限。只有经过孵化,成为可信赖的D&A产品后,数据才更具价值。图2所示为新兴的信息经济领域的三个主要议题。
图2:信息经济的主要议题:将信息作为资产进行估量、管理和货币化

运用区块链和隐私增强计算技术协同数据共享
中国的数据交换让企业机构可以与生态系统共享数据,创建强大的数据合作伙伴关系。在数据变现的过程中,企业需要以安全的方式共享数据,通过各种方式将价值最大化,比如数据管理和集成骨干网、数据即服务(DaaS)、数据交换、数据/人工智能交易平台。
区块链是用于保证整个数据交换生命周期有迹可循的技术之一。基于区块链数据,定价、签约、执行和付款都可以在订立智能合约的基础上进行交付。当然,区块链仍是一项新兴技术。它在数据交换场景的实施还在概念验证当中,目前还没有在实际的生产环境中使用。
同时,隐私增强计算技术将带来更多机会。传统的技术手段可为数据传输和数据存储提供保护,而隐私增强计算(PEC)技术可以保护使用中的数据。Gartner的2022年重要战略技术趋势中,隐私增强计算位列其一。企业如果能够通过对关键数据更广泛的获取来成功交付业务案例,就能在竞争中获得独特的优势。
好文章,需要你的鼓励
生成式AI的兴起让谷歌和Meta两大科技巨头受益匪浅。谷歌母公司Alphabet第三季度广告收入同比增长12%达742亿美元,云服务收入增长33%至151.5亿美元,季度总收入首次突破千亿美元大关。Meta第三季度收入512.5亿美元,同比增长26%。两家公司都将大幅增加AI基础设施投资,Meta预计2025年资本支出提升至700亿美元,Alphabet预计达910-930亿美元。
上海交通大学团队提出EPIC框架,通过渐进一致性蒸馏技术解决多模态AI的计算效率问题。该方法采用师生教学和分层压缩策略,让AI模型逐步适应视觉令牌压缩,在保留128个视觉令牌时仍达到完整模型准确率,同时计算量减少83.9%,为资源受限环境下的AI部署提供了实用解决方案。
谷歌DeepMind开发的多智能体AI系统通过让多个AI代理相互协作、讨论和辩论来解决复杂问题。该系统在医疗领域表现出色,能够在两天内完成人类十年的研究成果,包括发现新的药物重新定位候选物和治疗方案。AI临床医生"Amy"不仅能生成更好的诊断方案,还表现出比人类医生更强的同理心。这项技术有望在十年内实现零边际成本的全球医疗服务普及。
香港大学团队发明了一种"乐高式"机器人AI组合技术,能够将多个不同的AI模型巧妙组合,产生超越任何单个模型的性能。该技术通过数学方法证明了模型组合的有效性,并在真实机器人上验证成功。这种方法不需要重新训练,成本低廉,可兼容各种不同类型的AI模型,为构建更智能可靠的机器人系统提供了全新思路。