数字经济是一项重要的战略举措。Gartner预测,到2025年,60%的大型企业机构会在分析、商业智能或云计算领域采用一种或多种隐私增强计算技术。到2022年,90%的企业将明确提出把信息视为一项关键的企业资产,将分析视为企业的一项基本能力。
在中国,数据共享对于发展数字经济至关重要。自2020年起,中国政府已经将数据视为继土地、劳动力、资本、技术之外的第五大生产要素。数据共享为企业带来了许多机会,让他们能够借助外部数据做出更精准的业务决策,通过数据变现创造更多收入来源,以及与合作伙伴创建更广泛的生态系统。
在迎接数据共享带来的所有这些机会时,中国企业在计划数据共享进程时,应当遵循“无例外必分享”(must share data unless)模式,同时从三件优先事项出发,重点关注数据的使用、孵化和协同(如图1所示)。
图1:企业数据共享的主要推动因素和优先考量
使用外部数据加速AI和分析的发展
随着中国企业数字化转型的加速,除交易数据外,更加多样化的数据也可被收集,包括图形、图像、音频、语言和时间序列等非扁平、异构数据。
当下应用的主流AI方法中,大多数都是基于以数据为中心的机器学习或深度学习。因此,数据作为AI的“燃料”受到高度重视。而企业机构和行业之间数据资产可用性的不平衡也直接导致数据共享进程的加快。
获得更大的数据集将极大加速人工智能的开发利用,带来新的商业机会,甚至改变未来的商业模式。数据和分析(D&A)领导者应仔细研究数据集的可用性,并与业务团队协作,发现新的商机。
将数据作为能够创造有价值、可靠且合规的收入来源的产品
共享原始数据给企业带来的价值有限。只有经过孵化,成为可信赖的D&A产品后,数据才更具价值。图2所示为新兴的信息经济领域的三个主要议题。
图2:信息经济的主要议题:将信息作为资产进行估量、管理和货币化
运用区块链和隐私增强计算技术协同数据共享
中国的数据交换让企业机构可以与生态系统共享数据,创建强大的数据合作伙伴关系。在数据变现的过程中,企业需要以安全的方式共享数据,通过各种方式将价值最大化,比如数据管理和集成骨干网、数据即服务(DaaS)、数据交换、数据/人工智能交易平台。
区块链是用于保证整个数据交换生命周期有迹可循的技术之一。基于区块链数据,定价、签约、执行和付款都可以在订立智能合约的基础上进行交付。当然,区块链仍是一项新兴技术。它在数据交换场景的实施还在概念验证当中,目前还没有在实际的生产环境中使用。
同时,隐私增强计算技术将带来更多机会。传统的技术手段可为数据传输和数据存储提供保护,而隐私增强计算(PEC)技术可以保护使用中的数据。Gartner的2022年重要战略技术趋势中,隐私增强计算位列其一。企业如果能够通过对关键数据更广泛的获取来成功交付业务案例,就能在竞争中获得独特的优势。
好文章,需要你的鼓励
谷歌发布代理支付协议AP2,支持AI代理代表用户自动购物和决策。该开放协议获得60多家商户和金融机构支持,旨在实现AI平台、支付系统和供应商间的互操作性。协议要求两级审批机制:意图授权和购物车授权,确保交易可追溯。支持全自动购买和加密货币支付。万事达、美国运通、PayPal等主要金融服务商已表示支持。
腾讯混元团队推出P3-SAM系统,这是首个能够自动精确分割任意3D物体的AI模型。该系统采用原生3D处理方式,摆脱了传统方法对2D投影的依赖,在近370万个3D模型上训练而成。P3-SAM支持完全自动分割和交互式分割两种模式,在多个标准测试中达到领先性能,为游戏开发、工业设计等领域提供了强大的3D理解工具。
CrowdStrike在其年度Fal.Con 2025大会上发布了智能代理安全平台和智能代理安全团队两款新产品,旨在应对AI时代日益增长的安全需求。新平台基于企业图谱架构,统一企业遥测数据,配备AI优化查询语言。Charlotte AI AgentWorks提供无代码平台,让安全团队可轻松构建和部署可信安全代理。智能代理安全团队则通过AI驱动的代理直接服务客户,解决传统防御无法应对AI速度威胁的问题。
NVIDIA Research推出了革命性的UDR系统,让用户可以完全自定义AI研究助手的工作策略。该系统解决了传统研究工具固化、难以专业化定制的问题,支持任意语言模型,用户可用自然语言编写研究策略,系统自动转换为可执行代码。提供三种示例策略和直观界面,实现了AI工具的民主化定制,为专业研究和个人调研提供了前所未有的灵活性。