Gartner 2022年中国信息和通信技术成熟度曲线显示,机器人流程自动化(RPA)在国内的发展势头逐渐增强。如果运用得当,RPA可以帮助用户建立自动化工作流完成任务,提高企业机构生产率。
然而实际上很多RPA项目并不顺利,其中一个原因在于IT领导者使用这项技术的场景可能并不合适。此外,RPA供应商筛选流程也很复杂,领导者可能缺乏必要的资源或企业级支持来做好这项工作。
图1总结了中国RPA项目需要避开的三大陷阱。

使用四大原则筛选用例
RPA是众多自动化技术中的一种,其设计初衷是实现任务自动化。IT领导者如果确认RPA是实现自动化需求的最佳工具,则需要选出最合适部署RPA的任务自动化场景。
理想情况下,任何流程只要结构清晰、重复性强、规则明确,都可以使用RPA来完成自动化。为选出最佳应用场景,领导者再评估中需要考虑以下四个关键原则:
建立周密的评估标准
为准确评估RPA供应商的能力并选出最佳合作伙伴,国内IT领导者应在供应商评选开始前以及过程中与各干系人积极协商沟通,优先关注以下指标。
集成能力。IT领导者一定要确保供应商软件与自身IT环境可以兼容。为此,需要列举可能会应用到RPA的全部现有系统和应用,然后将其分为三类——经常使用的大众软件、偶尔使用的一般软件、很少使用的小众软件。
用户体验。终端用户对于自身工作的流程细节,有非常独到的见解。因此,IT领导者需要与业务终端客户和应用技术专业人员沟通,获取产品需求反馈。
用户体验在中国尤其重要。本地RPA供应商更了解国内用户,所以更容易做出中国公民开发者所需的直观产品用户界面(UI)。同时,本地供应商也更善于在整个销售和支持期间提供中文服务。
投资回报率和总体拥有成本。考虑到项目预算的限制,国内IT领导者往往青睐价格最低的RPA产品。售价低固然有吸引力,但并不等于投资回报率高。低价产品如果缺少关键功能,长期维护和人力成本会非常高。总之,要控制住选择最低价的冲动。
长期合作潜力。很多国内IT领导者低估了企业需要与RPA供应商合作的时间。RPA从部署到成熟,往往需要数年时间。因此,领导者需要判断供应商是否具有成为长期合作伙伴的潜力。合格的供应商不仅能覆盖短期自动化需求,还需要具备与企业发展战略和长期目标相匹配的RPA产品发展愿景。
建立RPA治理模型
为将RPA项目推向成熟阶段,完成企业机构内部的RPA推广,IT领导者需要建立RPA治理模型。为选出最合理的RPA治理模式,国内IT领导者需要优先关注以下三个方面:
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。