随着人们日益意识到其个人信息的价值并对透明度的缺乏和持续的滥用感到失望,数字伦理登上了Gartner 2021年隐私技术成熟度曲线的顶点。
Gartner将数字伦理定义为人、企业机构和物之间开展电子交互所遵循的价值和伦理道德原则体系。随着人工智能的采用,人们首次在广泛部署一项技术之前和在此过程中就开始进行伦理道德讨论。
企业机构正在采取保护个人数据安全的行动,各国政府也正在实施严格的法律来强制执行此类措施。Gartner预测,到2023年底,全球80%以上的公司将面临至少一项以隐私为重点的数据保护法规。
Gartner研究副总裁Bart Willemsen表示:“即使在尚未制定法规的地方,客户也在积极选择与尊重他们隐私的企业机构合作。新技术的应用(例如本技术成熟度曲线上的技术)将在这个不断变化的环境中提供保护隐私的途径。”
为了应对这些法律和客户需求变化,安全和风险管理领导人必须谨慎选择平衡创新和合规的技术。Gartner预测,到2024年,全球每年由隐私驱动的数据保护和合规技术支出将超过150亿美元。
积极主动而成熟的企业机构正在从被动合规转向主动隐私设计。这可以让他们开始投资于位于技术成熟度曲线左侧的创新,例如同态加密(一套能够在加密数据上进行计算的算法)和差别隐私(使用或共享一个数据集,同时隐瞒或歪曲其中某些个人信息的系统)。
技术成熟度曲线上的云访问安全代理(CASB)和动态数据屏蔽等多项技术预计将在未来两年得到广泛采用(见图一)。
图一、2021年隐私技术成熟度曲线
来源:Gartner(2021年9月)
新加入今年隐私技术成熟度曲线中的创新有:
好文章,需要你的鼓励
在我们的日常生活中,睡眠的重要性不言而喻。一个晚上没睡好,第二天的工作效率就会大打折扣,而充足的睡眠不仅能让我们恢复精力,还能帮助大脑整理和巩固当天学到的知识。有趣的是,AI模型竟然也表现出了类似的“睡眠需求”。
Patronus AI发布突破性研究,构建了首个系统性AI代理错误评估体系TRAIL,涵盖148个真实案例和21种错误类型。研究发现即使最先进的AI模型在复杂任务错误识别上准确率仅11%,揭示了当前AI代理系统在长文本处理、推理能力和自我监控方面的重大局限,为构建更可靠的AI系统指明方向。
尽管模型上下文协议(MCP)自11月推出以来用户数量快速增长,但金融机构等监管行业仍保持谨慎态度。银行等金融服务公司虽然在机器学习和算法方面是先驱,但对于MCP和Agent2Agent(A2A)系统的采用较为保守。监管企业通常只使用内部代理,因为其API集成需要经过多年审查以确保合规性和安全性。专家指出,MCP缺乏基本构建块,特别是在互操作性、通信标准、身份验证和审计跟踪方面。金融机构需要确保代理能够进行"了解您的客户"验证,并具备可验证的身份识别能力。
这项研究首次从理论和实践证明AI模型可通过模仿生物睡眠-学习周期显著提升性能。研究发现AI训练中存在自发的"记忆-压缩循环",并据此开发了GAPT算法,在大语言模型预训练中实现4.8%性能提升和70%表示效率改善,在算术泛化任务中提升35%,为AI发展指出了注重信息整理而非单纯数据扩展的新方向。