随着人们日益意识到其个人信息的价值并对透明度的缺乏和持续的滥用感到失望,数字伦理登上了Gartner 2021年隐私技术成熟度曲线的顶点。
Gartner将数字伦理定义为人、企业机构和物之间开展电子交互所遵循的价值和伦理道德原则体系。随着人工智能的采用,人们首次在广泛部署一项技术之前和在此过程中就开始进行伦理道德讨论。
企业机构正在采取保护个人数据安全的行动,各国政府也正在实施严格的法律来强制执行此类措施。Gartner预测,到2023年底,全球80%以上的公司将面临至少一项以隐私为重点的数据保护法规。
Gartner研究副总裁Bart Willemsen表示:“即使在尚未制定法规的地方,客户也在积极选择与尊重他们隐私的企业机构合作。新技术的应用(例如本技术成熟度曲线上的技术)将在这个不断变化的环境中提供保护隐私的途径。”
为了应对这些法律和客户需求变化,安全和风险管理领导人必须谨慎选择平衡创新和合规的技术。Gartner预测,到2024年,全球每年由隐私驱动的数据保护和合规技术支出将超过150亿美元。
积极主动而成熟的企业机构正在从被动合规转向主动隐私设计。这可以让他们开始投资于位于技术成熟度曲线左侧的创新,例如同态加密(一套能够在加密数据上进行计算的算法)和差别隐私(使用或共享一个数据集,同时隐瞒或歪曲其中某些个人信息的系统)。
技术成熟度曲线上的云访问安全代理(CASB)和动态数据屏蔽等多项技术预计将在未来两年得到广泛采用(见图一)。
图一、2021年隐私技术成熟度曲线

来源:Gartner(2021年9月)
新加入今年隐私技术成熟度曲线中的创新有:
好文章,需要你的鼓励
微软正式确认配置管理器将转为年度发布模式,并将Intune作为主要创新重点。该变化将于2026年秋季生效,在此之前还有几个版本发布。微软表示此举是为了与Windows客户端安全和稳定性节奏保持一致,优先确保安全可靠的用户体验。配置管理器将专注于安全性、稳定性和长期支持,而所有新功能创新都将在云端的Intune中进行。
这项由圣母大学和IBM研究院联合开展的研究,开发出了名为DeepEvolve的AI科学助手系统,能够像人类科学家一样进行深度文献研究并将创新想法转化为可执行的算法程序。该系统突破了传统AI要么只能改进算法但缺乏创新、要么只能提出想法但无法实现的局限,在化学、生物学、数学等九个科学领域的测试中都实现了显著的算法性能提升,为AI辅助科学发现开辟了新的道路。
人工智能初创公司aiOla推出基于流匹配训练技术的语音AI模型Drax,挑战OpenAI和阿里巴巴等巨头。该模型重新定义语音算法训练方式,能在嘈杂环境中准确识别语音,兼顾速度与准确性。相比OpenAI的Whisper和阿里巴巴Qwen2,Drax采用并行流处理技术,速度提升32倍,词错误率仅7.4%。该模型已在GitHub开源,提供三种规模版本。
卡内基梅隆大学研究团队通过3331次大规模实验,系统揭示了代码训练如何提升AI推理能力。研究发现,代码的结构特性比语义内容更重要,适当的抽象形式(如伪代码)可以达到与原始代码相同的效果。不同编程语言产生差异化影响:低抽象语言有利于数学推理,Python更适合自然语言任务。这些发现为AI训练数据的科学化设计提供了重要指导。