至顶网CIO与应用频道 08月08日 北京消息:你是否曾将应用了人工智能技术的“杀手级应用”投入大规模生产中?
实际上,这种情况较为少见。去年,全世界3182名首席信息官(CIO)中,仅有4%表示他们已将人工智能相关的应用投入生产中,或是在未来12个月内有此计划。首席信息官不一定了解企业中正在进行的每一个项目,但基本上这个数字的误差不会超过它的两倍。也许,8%的企业都已将这样的应用投入生产中,但8%这个数字很可能是对实际情况的一种高估。
为什么会出现这种情况?
今年6月27日,Gartner发布了一项人工智能技术成熟程度的研究,为企业架构师和科技创新者提供相关见解。该研究的重点在于人工智能技术的成熟程度,而不在于人工智能领域企业的发展状况。
从表面上看,人工智能领域在过去十年中取得了突破性的进展。不断有新的、宝贵的机会涌现出来。在这十年中,在与人工智能有关的研究、会议、研究生项目、初创公司、风险资金、公司中的并购(M&A)活动、人工智能相关的工作发布、专利申请上,我们都取得了很大的进步。
但我们看到的只是其中的一部分,还须考虑的是:
让我们把目光聚焦在“杀手级应用”的“真空”状态上。
我们向IT领导者或企业管理者询问了人工智能应用的问题,并向他们征求文字或口头回答,回答通常会分为以下四类:
第一, 决策支持/扩大化——帮助人们变得更加聪明
第二, 虚拟代理——熟悉用户的文字或发言
第三, 决策自动化——任务自动化或优化
第四, 智能产品——嵌入式的人工智能
这几类(先不说第二项)和老式汽车的市场非常相似——老式汽车的想法在十九世纪已经出现,在二十世纪早期出现了对应的产品。人们在熟悉的环境下可以更好地发挥想象。
因此,我们有例如:
客户对虚拟代理存在着普遍的兴趣。事实上,表示在人工智能技术上进行了投资的客户中,有三分之二提到了“面向用户”(通常与聊天有关)的项目。但是除非缩窄这些项目的定义,这些项目要达成一定规模的难度非常大。除了几家大型科技公司外,没有哪家公司具备开发出一个可以回答所有人所有问题的全能聊天机器人的能力,洞察引擎(Insights Engine)在这方面比聊天机器人做得更好。而从目前的情况来看,这些大公司的产品也并不是那么完美。谷歌的Duplex、亚马逊的Alexa Challenge中的对话可能是目前最为智能的,但企业是否会对这些项目大规模投资仍然悬而未决。
未来是难以预见的。除了聊天机器人之外,其余项目都仅是在“老式汽车”上的改进。那些能够让企业开创使用人工智能技术的新商业计划的巨大突破在哪里呢?
然而,行业、厂商、分析人员、咨询顾问乃至全世界范围内的企业,都并不了解这些巨大突破会是什么。
这其中一部分的问题是,人工智能最适合解决的问题,可能已超出那些想找到新的“杀手级商业应用”的人的能力和经验认知。
回到商用计算机的早期年代(二十世纪中期),企业购买计算机,运行人们已在纸上处理了数个世纪的问题。当人们知道如何在纸上进行记账,那么将相同的逻辑应用到计算机上就相对容易了。
在如今这个人工智能技术应用开始生产的早期时代,我们无意中失去了知道我们应该如何处理一些事情的能力。研究笔记中写道:
“我们现在能够用深度神经网络(DNN)为基础的系统对照片做面部识别。人类(我们灵长类动物的祖先)已经有至少五千万年的面部识别经验,但总的来说,我们并没有一套有效、系统的方法来进行面部识别。
我们只是运用人类的本能(不像科技开发者那样),用我们神经系统中不同的、与生俱来的学习回路来进行面部识别。其中具体的过程是模糊的。一个十五个月大的孩子是如何分辨出他父亲和母亲的图片的?我们并不了解。日常的人类经验不足以让我们建立一套实现脸部识别的技术。”
我们在缺乏这样的见解的同时,也缺乏实际经验以驱动对相关应用的创造或开发。拟人法可能会让我们误入歧途。
这些局限之外,我们仍要相信:
等待能够带动重大商业投资的“杀手级应用”被发现的过程中,我们将继续以实际的、策略性的方式进行小型投资,为业务带来实际价值。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
上海交通大学研究团队发布了突破性的科学推理数据集MegaScience,包含125万高质量实例,首次从12000本大学教科书中大规模提取科学推理训练数据。该数据集显著提升了AI模型在物理、化学、生物等七个学科的推理能力,训练的模型在多项基准测试中超越官方版本,且具有更高的训练效率。研究团队完全开源了数据集、处理流程和评估系统。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。