研究显示,普通锂离子电池之所以发生爆炸的重要原因之一,就是由于传统锂电池的电解液为有机液体,在不太高的温度下就能发生副反应,产生气体,膨胀后引起爆炸。针对这一情况,来自美国斯坦福大学的研究人员使用人工智能和机器学习的办法,找到了约21种固体的电解质材料,有希望彻底解决这一问题。
日前该团队将他们的研究成果发表在《能源与环境科学》杂志上。文章显示,科学家们并没有使用传统的随机测试个别化合物的方法来寻找新的固体电解质材料,而是使用了人工智能和机器学习,通过实验数据构造预测模型。他们训练了一种计算机算法,基于现有的数据,去学习如何辨认化合物的好坏。这个过程和人脸识别算法,在观察几个范例后,去辨认人脸的过程很类似。
论文的第一作者、研究的带头人、应用物理学博士研究生Austin Sendek表示:“现有的含有锂元素的化合物数量是数以万计的,绝大多数是未经测试的。其中的一些可能是性能优异的导体。我们开发了一个计算模型,对于我们现有的有限数据进行学习,从大规模的数据库中,筛选出合适的材料。这种筛选方法的速度是现有筛选方法的百万倍。”
为了设计这个模型,Austin Sendek花费了差不多两年时间,搜集了关于含有锂元素的固体化合物的几乎所有科学数据,然后通过这些数据对待选固体化合物的稳定性、成本、丰富度、锂离子的导电性等诸多理化属性进行了评测,最终筛选出了21种最合适的固体电解质材料。
Austin Sendek表示:“我们筛选了超过12,000种含有锂元素的化合物,最终找到了21种作为固体电极的理想材料。筛选只需要花费几分钟。我绝大多数的时间,实际上是用于搜集和管理所有的数据,开发对于预测模型更可靠的度量机制。”
研究人员未来计划在实验室环境下测试这21种材料,进一步确认它们是否是现实情况下的最佳选择。
对于这项研究的意义和未来,论文的另一位作者,材料科学和工程专业的助理教授Evan Reed 表示:“我们的方案能够处理关于材料的许多问题,有助于增加这个领域的研究投资效果。随着现实世界中数据量的增长和计算机性能的提高,我们的创新能力将以指数方式增加。无论是锂电池、燃料电池还是其他的各种电池,这个领域的研究都具有重大的意义。”
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。