研究显示,普通锂离子电池之所以发生爆炸的重要原因之一,就是由于传统锂电池的电解液为有机液体,在不太高的温度下就能发生副反应,产生气体,膨胀后引起爆炸。针对这一情况,来自美国斯坦福大学的研究人员使用人工智能和机器学习的办法,找到了约21种固体的电解质材料,有希望彻底解决这一问题。
日前该团队将他们的研究成果发表在《能源与环境科学》杂志上。文章显示,科学家们并没有使用传统的随机测试个别化合物的方法来寻找新的固体电解质材料,而是使用了人工智能和机器学习,通过实验数据构造预测模型。他们训练了一种计算机算法,基于现有的数据,去学习如何辨认化合物的好坏。这个过程和人脸识别算法,在观察几个范例后,去辨认人脸的过程很类似。
论文的第一作者、研究的带头人、应用物理学博士研究生Austin Sendek表示:“现有的含有锂元素的化合物数量是数以万计的,绝大多数是未经测试的。其中的一些可能是性能优异的导体。我们开发了一个计算模型,对于我们现有的有限数据进行学习,从大规模的数据库中,筛选出合适的材料。这种筛选方法的速度是现有筛选方法的百万倍。”
为了设计这个模型,Austin Sendek花费了差不多两年时间,搜集了关于含有锂元素的固体化合物的几乎所有科学数据,然后通过这些数据对待选固体化合物的稳定性、成本、丰富度、锂离子的导电性等诸多理化属性进行了评测,最终筛选出了21种最合适的固体电解质材料。
Austin Sendek表示:“我们筛选了超过12,000种含有锂元素的化合物,最终找到了21种作为固体电极的理想材料。筛选只需要花费几分钟。我绝大多数的时间,实际上是用于搜集和管理所有的数据,开发对于预测模型更可靠的度量机制。”
研究人员未来计划在实验室环境下测试这21种材料,进一步确认它们是否是现实情况下的最佳选择。
对于这项研究的意义和未来,论文的另一位作者,材料科学和工程专业的助理教授Evan Reed 表示:“我们的方案能够处理关于材料的许多问题,有助于增加这个领域的研究投资效果。随着现实世界中数据量的增长和计算机性能的提高,我们的创新能力将以指数方式增加。无论是锂电池、燃料电池还是其他的各种电池,这个领域的研究都具有重大的意义。”
好文章,需要你的鼓励
一旦人工智能达到通用智能(AGI)或超级智能(ASI)水平,人类将无法逆转回传统AI。AGI与人类智力相当,ASI则超越人类智慧。由于人类会对此类AI产生依赖,且AGI/ASI具备自我保护能力,通过全球禁令、内置终止开关或控制措施都难以有效阻止。AI末日论者担心existential风险,而AI加速主义者认为将解决人类问题。唯一可能的逆转机会是AGI/ASI主动选择关闭自己以拯救人类。
新加坡国立大学研究团队开发了SPIRAL框架,通过让AI与自己对弈零和游戏来提升推理能力。实验显示,仅训练AI玩简单扑克游戏就能让其数学推理能力提升8.6%,通用推理提升8.4%,且无需任何数学题目作为训练材料。研究发现游戏中的三种推理模式能成功转移到数学解题中,为AI训练提供了新思路。
开源加密初创公司ZamaSAS宣布完成5700万美元B轮融资,专注于为区块链和AI应用构建全同态加密技术以保护隐私。本轮融资由BlockchangeVentures和PanteraCapital共同领投,使公司总融资超过1.5亿美元,估值突破10亿美元。同时,Zama推出保密区块链协议公开测试网,允许开发者在以太坊上构建私密通信应用。
同济大学团队开发的GIGA-ToF技术通过融合多帧图像的"图结构"信息,创新性地解决了3D相机噪声问题。该技术利用图像间的不变几何关系,结合深度学习和数学优化方法,在合成数据集上实现37.9%的精度提升,并在真实设备上展现出色泛化能力,为机器人、AR和自动驾驶等领域提供更可靠的3D视觉解决方案。