ZD至顶网CIO与应用频道 10月31日 北京消息:美国时间10月27日,滴滴联合创始人兼CTO张博受邀在硅谷斯坦福大学给International Conference on 3D Vision 2016大会(下称:3DV大会)的“最佳论文奖”获得者颁奖。据悉,最佳论文获奖团队由来自苏黎世联邦理工学院(ETH Zurich)和Disney Research Zurich的四个人组成,他们的论文获得组委会的一致认可,得到了最高投票。现场专家称:“凭借密集光场下复杂物体重建的高效算法,他们获得了大会最佳论文奖。”
张博给“最佳论文获”获得者颁奖
据介绍,自2013年以来,3DV会议围绕计算机视觉和图形3D研究领域的多方面主题,包括创新的光学传感器、信号处理技术、几何建模、呈现和传输、可视化和互动,以及多种应用,推动了多项研究成果分享,是一个全球高端技术交流与分享平台,包括工业界、学术界等顶级专业人士均到场参会。本届演讲嘉宾包括来自Google、Facebook、微软的专家及MIT和UCLA大学教授等学界泰斗。
此次张博也受邀参加了3DV大会的专题演讲,他首先对滴滴的四年业务发展历史作了简单介绍:“滴滴成立于2012年,当时主要解决的是司机与乘客双方的信息不对称问题;2013年我们迅速发展,这一年的10月,我们市场占有率实现第一;2014年3月,我们用户数超过1亿,同年8月专车业务上线;2015年2月,滴滴和快的合并,并陆续上线了快车、顺风车和代驾、巴士业务;2016年3月,我们日订单突破1000万,5月获得苹果战略投资,8月并购Uber中国。”
张博在现场演讲
同时,他还透露了滴滴如何利用人工智能对出行带来的改变。“当乘客发出订单,我们会根据历史上发布订单和乘客行驶轨迹预测会在哪里上车,我们设置这个地点,司机会直接到该点接乘客,这是我们的推荐上车地点功能,可减少与司机沟通具体接驾时间。”
利用人工智能技术,滴滴可以为用户作路线规划,“ETA是很复杂的技术问题,从A点到B点到底需要多长时间,需要预估未来的路况。”
“拼车则是提高交通效率的大杀器,怎么满足出行需求又不增加道路车辆,拼车是唯一办法,当乘客发出拼车订单时,我们不仅要计算路径匹配程度,还要预测同路线是否有其他乘客能拼成功。”公开数据显示,滴滴利用算法技术,每天有超过200万人次通过拼车出行,大量减少了道路上的车辆,为社会创造了价值,而这些复杂的拼车运算,都是在以秒计算的很短时间内完成。
提及智能调度,张博表示,理想的交通状态是,全城拥有一个智能交通大脑,可对未来的出行需求进行预测。“滴滴对15分钟后供需预测的准确度达到了85%,平台会调度司机满足未来需求,使得未来该区域供需不平衡的概率下降。比如,预测某个区域15分钟后出现供给需求,就会把运力往这个区域调度,使得未来该区域供需不平衡的概率下降。”
张博演讲后的提问环节,来自全球学者围绕滴滴在人工智能、计算机视觉等领域的研究挑战,以及滴滴学术合作计划和高水平人才招募计划向他提问,张博一一回答了大家的问题,并表示滴滴期待和学术界同仁一起,共同解决出行领域的世界级挑战。
滴滴作为受邀企业,还参加了3DV大会的展示环节,介绍了滴滴研究院在人工智能领域的黑科技。此前有报道称,目前滴滴在美国硅谷招聘数据科学家,以帮助公司进行先进技术产品的研发。
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。