ZD至顶网CIO与应用频道 10月19日 北京消息:人工智能技术近年取得突破性进展,国内外巨头纷纷在深度学习、机器学习、数据挖掘等AI领域布局。滴滴出行联合创始人兼CTO张博在2016年世界人工智能大会上发表演讲时表示,人工智能将影响每一位用户的出行体验。
滴滴CTO张博在2016世界人工智能大会现场演讲
他以人工智能在滴滴的六大场景应用为例,介绍了AI对用户出行体验带来的改变。首先在上车地点推荐场景中,“滴滴出行大脑具备预测能力,通过发单和历史轨迹预测上车地点,能有效帮助提升用户体验。”张博说:“当乘客发出订单,需要知道上车点和目的地,滴滴上线的猜您想去功能,使得用户无需再填目的地,而推荐上车地点功能,可减少与司机沟通具体接驾时间,我们会根据历史上发布订单和乘客行驶轨迹预测会在哪里上车,我们设置这个地点,司机会直接到该点接乘客。”
人工智能在出行领域供需预测场景中的应用
供需预测是张博透露的第二个人工智能在出行场景里的应用。他认为,理想的交通状态是,全城拥有一个智能交通大脑,可对未来的出行需求进行预测。“滴滴对15分钟后供需预测的准确度达到了85%,平台会调度司机满足未来需求,使得未来该区域供需不平衡的概率下降。比如,预测某个区域15分钟后出现供给需求,就会把运力往这个区域调度,使得未来该区域供需不平衡的概率下降。”同时张博表示,“利用人工智能技术实现基于供需预测进行运力调度,该技术将至少带来五大社会意义,包括缓解区域之间供需不平衡的局面;提前布局运力;提高成交率;改善乘客出行体验以及提升司机收入。”
第三大场景是滴滴为用户作路线规划时,人工智能也在发挥重要作用。“ETA是很复杂的技术问题,从A点到B点到底需要多长时间,需要预估未来的路况。”据悉,滴滴出行是国内第一家把机器学习成功应用到ETA的公司,这是解决“订单高效匹配”和“司机运力调度”的关键技术。传统方法一般通过路况和每段路的平均速度计算出时间,然后加上可能的等待时间,得到整体所需时间,而滴滴则是利用机器学习来计算时间,大幅提升了用户体验。根据这一技术,目前滴滴出行平台上已经可以实时更新所剩余的距离以及到达终点的时间。
在拼车出行的场景中,张博表示,“拼车是提高交通效率的大杀器,怎么满足出行需求又不增加道路车辆,拼车是唯一办法,当发出拼车订单时,不仅计算路径匹配程度,还要预测同路线是否有其他乘客能拼成功。”公开数据显示,滴滴利用算法技术,每天有超过200万人次通过拼车出行,大量减少了道路上的车辆,为社会创造了价值,而这些复杂的拼车运算,都是在以秒计算的很短时间内完成。
值得一提的是人工智能在优质服务场景中的应用价值。张博表示,“我们会利用算法模型来计算不同服务水平的司机对用户产生的长期影响。”滴滴在9月上线服务信用体系,司机将拥有个人专属的服务信用档案和服务分值,为乘客提供优质服务的车主可获得更高的服务分,从而获得更多的订单和收入。目前服务分已与滴滴的智能派单系统结合,在距离、车型等条件类似的情况下,系统将优先派单给服务分较高的车主,帮助服务优良的车主获得高的收入。上述服务信用体系就是利用人工智能建立算法模型来实现。据悉,该信用体系上线后,用户投诉率和订单取消率都显著下降。
第六大场景应用体现在商业效率领域,“乘客完成行程后分享红包,并可在朋友圈分享折扣券,这个折扣券的数字也是通过大数据来计算和预测。”张博说。
人工智能当前取得突破性进展源于计算处理能力、算法以及大数据三方面的进步,其中大数据是当下的新能源,因为难以获取所以尤为珍贵。数据显示,当前滴滴在高峰期每分钟接收超过2万乘客需求,每个乘客需求在推送给合适司机前,要进行1000万次左右运算,在中国外的任何国家都不会见到如此大的数据处理需求。数据显示,当前滴滴在高峰期每分钟接收超过2万乘客需求,每位乘客需求在推送给合适司机前,要进行1000次左右运算,在中国外的任何国家都不会见到如此大的数据处理需求。此外,在收购Uber中国之前,滴滴就已经每天处理超过70TB数据,90亿次路径规划 请求,90亿次地图定位90亿次地图定位以及10亿次派单。
据公开数据,人工智能市场正在高速增长,2015年全球人工智能市场规模为74.5亿美元,预计到2020年该市场将达到183亿美元。艾瑞咨询数据显示,去年我国人工智能市场规模约12亿元人民币,未来5年的增长率将达到50%。
好文章,需要你的鼓励
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。
FuseLIP是一项突破性研究,提出了通过早期融合离散标记实现多模态嵌入的新方法。与传统CLIP模型使用独立编码器不同,FuseLIP采用单一编码器同时处理图像和文本标记,实现了更自然的模态交互。研究证明,这种早期融合方法在多种多模态任务上表现优异,特别是在需要理解图像结构而非仅语义内容的任务上。研究还开发了创新的数据集和评估任务,为多模态嵌入研究提供了宝贵资源。
ByteDance与浙江大学合作开发的MERIT是首个专为多语言多条件语义检索设计的基准数据集,包含320,000条跨5种语言的查询和135,000个产品。研究发现现有模型在处理多条件查询时过度关注全局语义而忽略特定条件元素,为此提出CORAL框架,通过嵌入重建和对比学习相结合的方式,使检索性能提升45.9%。这项研究不仅识别了现有方法的关键局限性,还为多条件交错语义检索领域的未来研究奠定了基础。