虽然2023年被称为是大模型元年,但全球科技界普遍认为,今天对于未来的想象力,依然是保守的。
从Chat GPT的出现到百模大战,只用了不到半年时间,生成式AI已经成为一个不得不打,还要打出成绩的战役。
经过一年的沉淀,通用大模型的能力正在逐渐增强,大模型厂商也在将这些能力逐渐下沉,希望真正应用到实际场景产生价值。
行业中也出现了一些产业标准和评测指标,12月22日,国内首个官方“大模型标准符合性评测” 《人工智能大规模预训练模型第2部分:评测指标与方法》结果公布,百度文心一言、腾讯混元大模型、360智脑、阿里云通义千问四款国产大模型首批通过测试。
测试由工信部中国电子技术标准化研究院发起,评测围绕多领域多维度模型评测框架与指标体系,从大模型的通用性、智能性、安全性等维度开展,涵盖语言、语音、视觉等多模态领域。
评测指标与方法的出台,一方面可以评估大模型的能力,一方面可以减少大模型诸如幻觉带来的安全问题、伦理问题。
我们常说的大模型幻觉,就是“胡说八道”。具体是指模型生成的内容与现实世界事实或用户输入不一致的现象。
大模型幻觉问题在于可能会导致误信和误用,特别是在用户未能意识到模型输出的不可靠性时。因此,理解和识别大模型幻觉的存在,对于任何依赖或使用这些技术的人来说都至关重要。
这要求从技术层面持续改进模型的准确性,减少错误和偏差的发生。让我们可以更安全、更有效地利用大模型的强大能力,同时避免或减轻由幻觉带来的负面影响。
最近,来自哈尔滨工业大学和华为的研究团队发表了一篇长达50页的综述,综述给出了一套新的范畴框架来定义模型幻觉,并将其分为事实性幻觉、忠实性幻觉两大类,其中也列出了少不业内比较有代表性减轻幻觉的方法。
本期《数字化转型方略》将探讨大模型的指标和幻觉问题,因为大模型不能只是刷榜,企业可以通过哪些关键指标来做判断是未来应用的关键,还有就是需要持续性关注的大模型的幻觉问题,推动AI向更可靠、更安全的方向发展。
《数字化转型方略》2023年第12期:http://www.zhiding.cn/dxinsight/2312
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。