根据管理咨询公司普华永道(PwC)的一项调查,获得技术投资回报的同时吸引和留住合适的人才,是阻碍组织成功实现供应链运营数字化的三大挑战。
普华永道的“供应链数字趋势调查”对全球244名运营和信息技术领导者、C级高管和其他供应链管理者进行了调查,有近80%的受访者表示,他们的技术投资并没有完全实现预期结果。
普华永道运营转型负责人Matt Comte表示:“企业看不到投资回报的原因很多。供应链是一个复杂的生态系统,由组织内外的利益相关者组成,实施单点的解决方案往往不能解决更大的问题。”
Comte说,为了在物流、交付和仓储方面做出最佳决策,企业需要一种涵盖了很多不同数据集和流程的集成方法。
Comte说,吸引和留住合适的人才,也是充分发挥企业技术投资潜力的关键。
预算限制和员工流动给供应链管理带来阻碍
近48%的受访者表示,他们遇到了员工成本方面的预算限制,超过58%的受访者表示,供应链员工流动率高于正常水平。只有23%的受访者表示,他们拥有实现未来目标所需的数字技能。
“如今,企业需要技术和职能人才,以及完善的技术平台和质量数据集,才能成功地实现供应链运营的数字化,”Comte他补充说。他认为,供应链专家需要与CIO或者数据科学工程师展开合作,打造能够提供必要洞察的AI模型。
调查发现,找到具有协作思维、了解业务且具备技术能力的员工,也是一项重大的挑战。
Comte表示,企业可以在短期内通过有效利用超大规模厂商和其他软件供应商提供的平台来应对这些挑战,最大程度上提高数据摄取、分析和建模的能力,从而产生更多的业务洞察力。
云、无代码助力供应链数字化
“行业云结合数据市场、数据交换、低代码/无代码平台的使用,可以在短期内为企业提供帮助,”Comte说。
不过从长远来看,这些措施无法克服人才方面的挑战,可能需要对现有员工队伍进行挑战,Comte说。
“CXO需要针对组织当前的问题转换可用的人才,”Comte补充说,一些流程和任务可以由机器人流程自动化(RPA)或者人工智能(AI)接管,这反过来可以释放出员工资源,让他们接受培训以实现未来的目标。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。