数据分析能力已经越来越变成一种业务能力,所以2022年,Gartner针对数据分析趋势提出了“构建业务价值新等式”的理念。
何为“新等式”?Gartner高级研究总监孙鑫表示,企业更多的部门需要数据分析去实现更多价值,带来更多业务模式的思考,更好的帮助企业实现数字化转型。
Gartner高级研究总监孙鑫
根据这一理念,今年Gartner发布的数据和分析(D&A)领导者在企业中利用2022年主要数据和分析趋势就分为了三大主题:激发企业活力和多样性、增强人员能力和决策,信任的制度化。
激发企业活力和多样性
自适应人工智能系统:Gartner提出了“AI工程化”的举措,预计到2026年企业利用AI工程化手段实现自适应的人工智能系统,可以更有效地帮助企业运营出更多AI模型,比没有这一举措的企业多出25%的数量。
以数据为中心的人工智能:以数据为核心的人工智能将会不断发展,它扩展的学科也会越来越多,所以企业需要一个更健壮的数据管理模式去完成对于AI运营的能力。
元数据驱动的数据编织:企业如果可以更好的利用数据编织到元数据管理数据源,可以有效的降低过去繁琐的数据管理工作。
始终数据共享:越来越多的企业会考虑用可以被治理的方式下分享数据,关注如何通过自动化的手段发现更多相关数据,使用开放型OpenData的方式对自己的数据可能性进行更多探索。
增强人员能力和决策
语境丰富的分析:为了提供与决策者相关的洞察,数据和分析领导者必须提供语境丰富、使用业务模块组件创建的分析。
业务模块组装式数据和分析:过去的技术可能是固化的、单体软件的一种形式,但是未来的技术会使用更多组装式的技术完成应用的搭建。
以决策为中心的数据和分析:企业需要越来越多的人可以在一个更高的高度上为企业的决策做基于数据分析的建议和规划。Gartner提出了决策智能模型帮助企业从顶层设计的角度去管理决策链。
人员技能和素养的不足:企业需要让用户能够讲出用了数据分析之后的业务成果,从而能够影响更多的人。
信任的制度化
互联治理:建立一个跨组织、跨业务职能,甚至是跨地域的虚拟数据和分析治理层,以实现跨企业的治理结果。中国很多企业会考虑建立“首席数据官”办公室,办公室会有数据治理委员会,治理委员会会和一些法律部门做合作,把“互联治理”在一个更高层次的虚拟层实现。
AI风险管理:很多企业更多的是因为监管和合规性的驱动,在做一些模型治理,所以在做AI模型的时候是完全被动的。Gartner希望企业关注在信任风险和安全管理对于AI的一些治理。
厂商和地区生态系统:企业去建立自己数据分析生态时,要更多考虑厂商与厂商之间的兼容性。
向边缘的扩展:数据和分析的活动越来越多在数据中心或公有云基础设施之外的分布式设备服务器、网关当中去进行操作。
现在企业拥有非常多的数据,但是这些数据并没有被激活,企业很多时候是被动执行数据分析项目和行为,并没有非常主动的把数据的潜在价值发挥出来。孙鑫认为,如何让越来越多的用户可以基于数据做决策,已经成为现阶段企业的挑战,在云上做数据分析已经成为一个首选项,同时企业也希望利用一些“自服务”工具让业务用户更快速的做决策。
Gartner今年的预测中也做了一个比较大胆的预测,越来越多数据分析活动将会始于数字化办公软件,业务提需求的同时会在数字化办公软件里完成数据分析,并且基于数据分析可以在数字化办公软件里完成业务的一些行动,完成数据分析的闭环。
好文章,需要你的鼓励
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AI虽具备变革企业洞察力的潜力,但成功依赖于数据质量。大多数AI项目失败源于数据混乱分散而非算法局限。谷歌BigQuery云数据AI平台打破数据孤岛,简化治理,加速企业AI应用。通过AI自动化数据处理,实现实时分析,并与Vertex AI深度集成,使企业能够高效处理结构化和非结构化数据,将智能商业转型从愿景变为现实。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。