据IBM预测,到2020年将有大约270万个新职位面向精通数据的专业人员开放。根据Glassdoor的预测,这些专业人员的平均薪资为96441美元,在一些城市甚至更高。
如果你的公司正在积极聘请数据科学专业人士,那么好消息是,对内部IT员工进行交叉培训可能是一个成功的策略。根据来自数据科学社区Kaggle的最新报告显示,59%的在职数据科学家将从自学或者在线开放课程中获得相关技能。
作为一位企业培训总监,我曾被要求制订一个“从零开始”的课程,可以培训入门级员工,以及交叉培训更有经验的员工,让他们获得编写股票交易系统代码所需的技能,还包括远程处理引擎、操作系统、数据库、代码库、调用操作、端到端软件开发流程的相关技能培训。
这是一个复杂的任务。目标是能够让一个新培训的人员成为项目的骨干,他/她能够在高要求的环境中立即开始开发代码。
相同的方法也适用于内部数据科学技能的开发。下面就是5个基本步骤:
1、分析公司项目中的任务和技能差距
一个好的起点就是和公司项目负责大数据和分析的负责经理进行沟通。他们的项目有哪些不足?他们在项目中缺少哪些人员配备?需要哪些具体的技术和个人技能?是否有因为缺乏人能够做到而导致项目推迟?根据这些问题的反馈,你可以按照项目列出任务和技能差距的列表。
2、将这些技能与内部员工进行对照
下一步就是评估内部人员,看看谁有能力和背景来承担这些任务和填补技能空白,然后把他们确定为培训的对象。你可以查看公司的个人IT经验,研究员工的以往工作经验,与项目经理一起了解候选人的更多信息,以及他们的才能和兴趣也很重要。
3、设计一个课程,找到一个项目
让你选择的员工在一个孤立的实验环境中开发自身技能,这一定不会奏效的。实验室对于开发技能来说是很好的,但是能够让他们真正地利用这些技能,就要运用于实际的项目中,从而积累经验和自信。
4、不断与项目经理进行沟通
与开发新培训员工的项目经理保持沟通,以便你了解项目进展情况。这让你保持与经理的融洽关系。在项目完成之后,与项目经理进行沟通,有助于评估培训及传授给员工的技能的有效性。在这个过程中,你可以发现课程中那些方面是不错的,哪些方面是可以加强的。
5、不断改进课程,以便跟上实际的项目需求
一些项目需求是保持相对稳定的,但有一些项目需求是随着技术和业务变化而变化的。这一点至关重要,如果你正在开展培训,就需要跟上变化的步伐,这样你的培训总能提供项目所需的技能。你可以通过不断评估项目,然后回到课程中,确保培训与项目的需求是同步的。
最终,我要借用Cloudera教育服务部门副总裁Sara Sproehnle的一句话:“你可以很容易地对员工进行交叉培训。这并不是说技术是不可理解的。你只需要把现有的开发者、分析师和管理员集结到一起,对他们进行交叉培训。”
Sproehnle一语中的。如果越来越多的企业IT部门能够把大数据和分析培训掌握在他们自己手中,这个策略才能真正发挥作用。
好文章,需要你的鼓励
国际能源署发布的2025年世界能源展望报告显示,全球AI竞赛推动创纪录的石油、天然气、煤炭和核能消耗,加剧地缘政治紧张局势和气候危机。数据中心用电量预计到2035年将增长三倍,全球数据中心投资预计2025年达5800亿美元,超过全球石油供应投资的5400亿美元。报告呼吁采取新方法实现2050年净零排放目标。
维吉尼亚理工学院研究团队对58个大语言模型在单细胞生物学领域的应用进行了全面调查,将模型分为基础、文本桥接、空间多模态、表观遗传和智能代理五大类,涵盖细胞注释、轨迹预测、药物反应等八项核心任务。研究基于40多个公开数据集,建立了包含生物学理解、可解释性等十个维度的评估体系,为这个快速发展的交叉领域提供了首个系统性分析框架。
AMD首席执行官苏姿丰在纽约金融分析师日活动中表示,公司已准备好迎接AI浪潮并获得传统企业计算市场更多份额。AMD预计未来3-5年数据中心AI收入复合年增长率将超过80%,服务器CPU收入份额超过50%。公司2025年预期收入约340亿美元,其中数据中心业务160亿美元。MI400系列GPU采用2纳米工艺,Helios机架系统将提供强劲算力支持。
西湖大学王欢教授团队联合国际研究机构,针对AI推理模型内存消耗过大的问题,开发了RLKV技术框架。该技术通过强化学习识别推理模型中的关键"推理头",实现20-50%的内存缩减同时保持推理性能。研究发现推理头与检索头功能不同,前者负责维持逻辑连贯性。实验验证了技术在多个数学推理和编程任务中的有效性,为推理模型的大规模应用提供了现实可行的解决方案。