AWS今天公布了一系列AI优化的实例,号称这是市场上最强大的实例,旨在吸引更多企业在AWS云平台上运行人工智能项目。
这个新的P3系列是基于NVIDIA最新一代Volta GPU——Tesla V100,对标的是微软和Google的云产品。该芯片是在5月公布,在大小和苹果Apple Watch手表的模片上封装了211亿个晶体管。这些晶体管形成了超过5700个处理核心,其中640个是所谓的Tensor Cores,是专门针对运行AI模型的优化电路。
Amazon新推出的P3实例系列有三种规格,分别提供每虚拟机1个、4个和8个V100。最高的两个配置中芯片是使用NVIDIA开发的NVLink技术连接的,该技术可交换数据进行处理,速度远远快于传统方式。这三个实例背后是有最多64个基于英特尔至强E5-2686v4 CPU修改版的vCPU支持。
所有这些芯片能够让最大的P3实例在特定情况下提供高达1 petaflop的性能。在更实际的情况下,该系列也要比AWS上一代P2快大约14倍。
AWS高管Matt Garman在声明中表示,P2实例已经是“当前云中能够最大限度完成机器学习”的实例,也就是说,P3系列的发布只会进一步巩固AWS的领先地位,特别是AWS的两大竞争对手Google和微软目前都还没有在他们各自的云平台上支持NVIDIA V100芯片。
Moor Insights & Strategy高性能计算和深度学习咨询主管Karl Freund表示:“AWS和NVIDIA再一次走在了前列,树立了业界其他厂商可以遵循的价格标杆。”
现在企业客户能够开始使用新P3系列的方法有两种,他们可以手动设置,或者使用针对P3系列的两个预配置Amazon Machine Images之一,其中包括。
NVIDIA表示,AWS客户是第一批可使用NVIDIA AI Cloud Container Registry的客户,这个软件堆栈包含常用的深度学习框架,例如TensorFlow、Caffee、CNTK和Torch。
NVIDIA公司副总裁、企业系统总经理Jim McHugh表示:“这将为开发者提供他们需要的大量功能,其想法是尽可能多地吸引用户,让深度学习普及开来。”
尽管AWS是第一个采用NVIDIA最新技术的厂商,但是其他云提供商也将这么做,不过他并没有提供具体的时间表。
P3系列的第一个采用者是位于纽约的化学模拟提供商Schrödinger LLC。这家公司宣称,新的实例让他们在一天内运行的模拟数量是上一代P2的4倍。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。