AWS今天公布了一系列AI优化的实例,号称这是市场上最强大的实例,旨在吸引更多企业在AWS云平台上运行人工智能项目。
这个新的P3系列是基于NVIDIA最新一代Volta GPU——Tesla V100,对标的是微软和Google的云产品。该芯片是在5月公布,在大小和苹果Apple Watch手表的模片上封装了211亿个晶体管。这些晶体管形成了超过5700个处理核心,其中640个是所谓的Tensor Cores,是专门针对运行AI模型的优化电路。
Amazon新推出的P3实例系列有三种规格,分别提供每虚拟机1个、4个和8个V100。最高的两个配置中芯片是使用NVIDIA开发的NVLink技术连接的,该技术可交换数据进行处理,速度远远快于传统方式。这三个实例背后是有最多64个基于英特尔至强E5-2686v4 CPU修改版的vCPU支持。
所有这些芯片能够让最大的P3实例在特定情况下提供高达1 petaflop的性能。在更实际的情况下,该系列也要比AWS上一代P2快大约14倍。
AWS高管Matt Garman在声明中表示,P2实例已经是“当前云中能够最大限度完成机器学习”的实例,也就是说,P3系列的发布只会进一步巩固AWS的领先地位,特别是AWS的两大竞争对手Google和微软目前都还没有在他们各自的云平台上支持NVIDIA V100芯片。
Moor Insights & Strategy高性能计算和深度学习咨询主管Karl Freund表示:“AWS和NVIDIA再一次走在了前列,树立了业界其他厂商可以遵循的价格标杆。”
现在企业客户能够开始使用新P3系列的方法有两种,他们可以手动设置,或者使用针对P3系列的两个预配置Amazon Machine Images之一,其中包括。
NVIDIA表示,AWS客户是第一批可使用NVIDIA AI Cloud Container Registry的客户,这个软件堆栈包含常用的深度学习框架,例如TensorFlow、Caffee、CNTK和Torch。
NVIDIA公司副总裁、企业系统总经理Jim McHugh表示:“这将为开发者提供他们需要的大量功能,其想法是尽可能多地吸引用户,让深度学习普及开来。”
尽管AWS是第一个采用NVIDIA最新技术的厂商,但是其他云提供商也将这么做,不过他并没有提供具体的时间表。
P3系列的第一个采用者是位于纽约的化学模拟提供商Schrödinger LLC。这家公司宣称,新的实例让他们在一天内运行的模拟数量是上一代P2的4倍。
好文章,需要你的鼓励
在我们的日常生活中,睡眠的重要性不言而喻。一个晚上没睡好,第二天的工作效率就会大打折扣,而充足的睡眠不仅能让我们恢复精力,还能帮助大脑整理和巩固当天学到的知识。有趣的是,AI模型竟然也表现出了类似的“睡眠需求”。
Patronus AI发布突破性研究,构建了首个系统性AI代理错误评估体系TRAIL,涵盖148个真实案例和21种错误类型。研究发现即使最先进的AI模型在复杂任务错误识别上准确率仅11%,揭示了当前AI代理系统在长文本处理、推理能力和自我监控方面的重大局限,为构建更可靠的AI系统指明方向。
尽管模型上下文协议(MCP)自11月推出以来用户数量快速增长,但金融机构等监管行业仍保持谨慎态度。银行等金融服务公司虽然在机器学习和算法方面是先驱,但对于MCP和Agent2Agent(A2A)系统的采用较为保守。监管企业通常只使用内部代理,因为其API集成需要经过多年审查以确保合规性和安全性。专家指出,MCP缺乏基本构建块,特别是在互操作性、通信标准、身份验证和审计跟踪方面。金融机构需要确保代理能够进行"了解您的客户"验证,并具备可验证的身份识别能力。
这项研究首次从理论和实践证明AI模型可通过模仿生物睡眠-学习周期显著提升性能。研究发现AI训练中存在自发的"记忆-压缩循环",并据此开发了GAPT算法,在大语言模型预训练中实现4.8%性能提升和70%表示效率改善,在算术泛化任务中提升35%,为AI发展指出了注重信息整理而非单纯数据扩展的新方向。