大多数现代的物联网生态系统都依赖于与互联网的永久连接。设备不断地向云中的数据中心发送和接收数据。明显的优点:用户可随时随地对系统进行监控和控制。明显的缺点:在连接丢失的情况下,大多数系统停止工作。为什么我们愿意承担这个风险?
物联网之所以被称为物联网,是因为互联网扮演了重要的角色。设备在本地环境中不再被隔离,它们可以随时与外界互动,使用天气或交通的实时数据,帮助我们做出最佳决策,管理我们的日常生活。但是,永远在线所带来的便捷,让我们对数据变得很随意。
物联网设备通常通过网络向数百公里之外发送数据,进行交互,即使有时设备之间的距离只有几米。当我们使用我们的智能手机,打开客厅的灯时,在毫秒之内,该命令就穿梭了大陆的一半。我们认为这很正常。但是,如果你的孩子就在隔壁房间,你会通过WhatsApp来叫他吃饭吗?这很奇怪,不是吗?
随着市场上的处理器更便宜,更小,是时候收回一点控制权了。如果智能设备依赖于信息中心来做出决定,那么这个设备并不智能。
过去,云是一切的解决方案,但这种趋势似乎正在转变。显而易见,并不是所有的数据都需要发送到云,这样会使得物联网生态系统容易出现停电现象,甚至使整个安装过程放缓。
边缘计算越来越受欢迎,将处理能力从信息中心逐渐转移到网络边缘。即使像微软(Azure IoT Edge)和亚马逊(AWS Greengrass)这样的巨头最近也意识到这样的趋势,并提供他们的边缘解决方案。
边缘这个术语起源于移动网络,通常数据在尽可能接近终端用户设备的点被压缩;目的是使其更快地在移动网络中传输。其目标是缓解网络负担,加快整个系统的运行。边缘意味着在终端进行尽可能多的处理—在网络的边缘,通常在连接设备上。它适用于移动网络,所以应该也适用于物联网网络。
云或边缘:应该如何选择?
在生活中经常如此,没有完美的解决方案。这取决于每个用例。两者的混合可能是完美的:在混合系统中,简单的任务在设备之间直接进行。这样,他们可以尽可能快速,独立地完成工作,这对于楼宇自动化,或智能行业的设置,尤为有效。
只需确保你将分析和监控所需的数据,发送到云。 随着大型公司将业务从纯云转移到混合产品,我们甚至可能会看到因为有无数不同的标准,多样化物联网的各种困难。
因为短期内不会有任何通用的物联网标准,因此设备和网关制造商可能会在其设备中实现更多的功能,而不仅仅是将其放到云中。 关于物联网生态系统,我们已经徘徊在边缘太久了。让我们更靠近它。
好文章,需要你的鼓励
亚马逊云服务部门与OpenAI签署了一项价值380亿美元的七年协议,为ChatGPT制造商提供数十万块英伟达图形处理单元。这标志着OpenAI从研究实验室向AI行业巨头的转型,该公司已承诺投入1.4万亿美元用于基础设施建设。对于在AI时代竞争中处于劣势的亚马逊而言,这项协议证明了其构建和运营大规模数据中心网络的能力。
特拉维夫大学研究团队开发了SAEdit方法,使用稀疏自编码器实现精确的AI图像编辑控制。该技术能像调节音量一样精确控制编辑强度,实现从微笑到大笑的连续调节,同时确保编辑的高度解耦性,避免意外修改其他图像元素。方法具有出色的通用性,可应用于多个AI图像生成平台,为图像编辑领域带来重大突破。
当今最大的AI数据中心耗电量相当于一座小城市。美国数据中心已占全国总电力消费的4%,预计到2028年将升至12%。电力供应已成为数据中心发展的主要制约因素。核能以其清洁、全天候供电特性成为数据中心运营商的新选择。核能项目供应链复杂,需要创新的采购模式、标准化设计、早期参与和数字化工具来确保按时交付。
Code4Me V2是荷兰代尔夫特理工大学开发的开源AI编程助手平台,专为学术研究设计。它解决了商业AI编程工具透明度不足、无法获取交互数据的问题,提供了模块化架构和完整的数据收集框架。该工具性能可媲美商业产品,代码补全延迟仅186.31毫秒,同时支持内联补全和聊天功能。通过透明、可控制、可扩展的设计,为AI辅助编程研究提供了重要的基础设施平台。