大多数现代的物联网生态系统都依赖于与互联网的永久连接。设备不断地向云中的数据中心发送和接收数据。明显的优点:用户可随时随地对系统进行监控和控制。明显的缺点:在连接丢失的情况下,大多数系统停止工作。为什么我们愿意承担这个风险?
物联网之所以被称为物联网,是因为互联网扮演了重要的角色。设备在本地环境中不再被隔离,它们可以随时与外界互动,使用天气或交通的实时数据,帮助我们做出最佳决策,管理我们的日常生活。但是,永远在线所带来的便捷,让我们对数据变得很随意。
物联网设备通常通过网络向数百公里之外发送数据,进行交互,即使有时设备之间的距离只有几米。当我们使用我们的智能手机,打开客厅的灯时,在毫秒之内,该命令就穿梭了大陆的一半。我们认为这很正常。但是,如果你的孩子就在隔壁房间,你会通过WhatsApp来叫他吃饭吗?这很奇怪,不是吗?
随着市场上的处理器更便宜,更小,是时候收回一点控制权了。如果智能设备依赖于信息中心来做出决定,那么这个设备并不智能。
过去,云是一切的解决方案,但这种趋势似乎正在转变。显而易见,并不是所有的数据都需要发送到云,这样会使得物联网生态系统容易出现停电现象,甚至使整个安装过程放缓。
边缘计算越来越受欢迎,将处理能力从信息中心逐渐转移到网络边缘。即使像微软(Azure IoT Edge)和亚马逊(AWS Greengrass)这样的巨头最近也意识到这样的趋势,并提供他们的边缘解决方案。
边缘这个术语起源于移动网络,通常数据在尽可能接近终端用户设备的点被压缩;目的是使其更快地在移动网络中传输。其目标是缓解网络负担,加快整个系统的运行。边缘意味着在终端进行尽可能多的处理—在网络的边缘,通常在连接设备上。它适用于移动网络,所以应该也适用于物联网网络。
云或边缘:应该如何选择?
在生活中经常如此,没有完美的解决方案。这取决于每个用例。两者的混合可能是完美的:在混合系统中,简单的任务在设备之间直接进行。这样,他们可以尽可能快速,独立地完成工作,这对于楼宇自动化,或智能行业的设置,尤为有效。
只需确保你将分析和监控所需的数据,发送到云。 随着大型公司将业务从纯云转移到混合产品,我们甚至可能会看到因为有无数不同的标准,多样化物联网的各种困难。
因为短期内不会有任何通用的物联网标准,因此设备和网关制造商可能会在其设备中实现更多的功能,而不仅仅是将其放到云中。 关于物联网生态系统,我们已经徘徊在边缘太久了。让我们更靠近它。
好文章,需要你的鼓励
在“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场以“AIGC创作新范式——双脑智能时代:心智驱动的生产力变革”为主题的分论坛,成为现场最具张力的对话空间。
人民大学团队开发了Search-o1框架,让AI在推理时能像侦探一样边查资料边思考。系统通过检测不确定性词汇自动触发搜索,并用知识精炼模块从海量资料中提取关键信息无缝融入推理过程。在博士级科学问题测试中,该系统整体准确率达63.6%,在物理和生物领域甚至超越人类专家水平,为AI推理能力带来突破性提升。
Linux Mint团队计划加快发布周期,在未来几个月推出两个新版本。LMDE 7代号"Gigi"基于Debian 13开发,将包含libAdapta库以支持Gtk4应用的主题功能。新版本将停止提供32位版本支持。同时Cinnamon桌面的Wayland支持持续改进,在菜单、状态小程序和键盘输入处理方面表现更佳,有望成为完整支持Wayland的重要桌面环境之一。
Anthropic研究团队开发的REINFORCE++算法通过采用全局优势标准化解决了AI训练中的"过度拟合"问题。该算法摒弃了传统PPO方法中昂贵的价值网络组件,用统一评价标准替代针对单个问题的局部基准,有效避免了"奖励破解"现象。实验显示,REINFORCE++在处理新问题时表现更稳定,特别是在长文本推理和工具集成场景中展现出优异的泛化能力,为开发更实用可靠的AI系统提供了新思路。