流行的术语指的是在日常经营活动中收集的大量信息。根据行业的不同,这可能是从作物产量到患者,到人口统计学以及其间的一切。那么如何利用大数据改变农业?
1.无人机巡逻
监测数百亩的农作物可能是一项艰巨的工作,要求数十人步行或驾车在田地中检查病虫害。无人机组可以做同样的工作,而只由一两个人管理。根据无人机的规格,他们也可以配备如下:
•土壤取样器-可用于测试营养水平,土壤水分等。
•叶片采样器-小型叶片可以采集可通过无人机或实验室设置进行分析的植物样品。
•有害生物捕获设置-如果害虫成灾,获取样品可以更容易地确定最佳灭绝方法。
太阳能无人机可以在白天一直巡逻整个农场,而不需要停止充电,只有在太阳下山的夜晚才返回基地。
2.养分管理
收集有关土壤养分水平的信息是农业工作的主要部分,无论其规模大小。通过收集大量信息,很容易确定哪些地域需应用肥料或施肥增中营养来确保最佳生长。这个数据收集的问题在检测到问题之后,然后进行修复。
通过对这些信息应用大数据和预测算法,计算机可以预测养分问题,然后才能确定可能危及作物产量的重大问题。
3.作物产量预测
通过研究前几年的产量和应用大数据,能够以相对较高的准确度来预测作物在给定年份或给定领域产生的最高产量。
如果前几年收集的信息准确无误,可以确定最好的播种日期,施肥或除草剂的最佳时间,以及收获年份的最佳时间,确保最高产量变得更容易。
4.供应链
大量数据已经被应用于各行各业的供应链。在农业方面,从种子,化肥,除草剂,杀虫剂等作物的供应来源到最终送到农业杂货店,这都是供应链的一部分。所有这些数据都是可收集的。这个信息是每个农场的重要组成部分,但一旦收集,它也可以作为大数据的一部分使用。
通过使用预测分析,农场主可以预测库存和化学品使用情况。这使得他们只能订购所需的耗材,而不用订购额外的物品,并消除他们可能会或可能永远不会使用备份库存,因为将不得不为存储的库存支付费用。
5.天气情况
虽然人们可以控制农业所有的变量,但天气总是会在一定程度上变化(不了解季节性天气模式)。炎热的夏天需要更多的灌溉,而潮湿的月份可能导致作物霉变或霉菌生长。
而天气预报的能力有限,但人们可以预测,不同的作物将如何对不断变化的天气模式,并做出反应,以及如何最佳地补偿这些变化。
无论人们是否愿意承认,气候正在发生变化,农业必须适应未来的良好收益。农业是一个不断变化的领域,而大数据可以帮助农民提高收入,适应自然大自然中的任何事情。大数据与预测分析结合使用时,可以帮助提高管理能力。未来,无人机和大数据可能会改变农民的工作方式,技术进步将有助于农场适应和饲养场获得更好的成本效益。
好文章,需要你的鼓励
微软在Ignite 2025大会上预览了Windows的重要更新,显示出操作系统向支持AI智能体的根本性转变。新增功能包括原生支持模型上下文协议(MCP)、智能体连接器注册表、明确的权限管控模型,以及独立的智能体工作空间。这些更新建立了OS级别的身份验证、授权和审计机制,让智能体能够安全地执行文件操作和系统设置等任务,同时保持可控性和可追溯性。
瑞士洛桑联邦理工学院研究团队开发出"稳定视频无限"技术,通过创新的"错误循环利用"方法解决了AI视频生成长度限制问题。该技术让AI在训练时主动学习处理各种错误,从而能够生成任意长度的高质量视频内容,支持复杂场景转换和多模态控制,为内容创作、教育和娱乐行业带来revolutionary变革。
苹果即将发布的macOS Tahoe 26.2系统将支持通过雷雳5连接多台Mac设备,构建低延迟AI超算集群。该功能支持Mac Studio、M4 Pro Mac mini和MacBook Pro等设备。四台Mac Studio可高效运行万亿参数的Kimi-K2-Thinking模型,功耗不到500瓦,比传统GPU集群低10倍。此外,MLX项目将获得M5芯片神经加速器的完整访问权限。
华为诺亚实验室等机构联合提出了一种创新的AI训练方法,通过双层优化框架让AI从数据中自动学习评价标准。该方法结合了传统最大似然估计和强化学习的优势,在表格分类和模型驱动强化学习任务中展现出更好的收敛性和泛化能力,为解决强化学习中缺乏明确奖励信号的问题提供了新思路。