脆弱的项目管理技能,错过的时间线,敏感的员工——其中的任何一条都可能破坏你羽翼未丰的DevOps环境。
DevOps混合了任何由公司应用开发和系统运营团队一起执行的任务。这简单的定义掩盖了向DevOps环境过渡的复杂性。真的,CIO们向DevOps过渡所面临的潜在问题很多。这些地雷所在范围从技术(比如测试环境或架构的错误)到文化(比如高估速度而低估质量),再到管理(没有获得执行官的支持)。
这里,我们的专家列出了在向DevOps环境过渡时易犯的四种常见错误,并指出如何避免它们:
错误1:被DevOps标题所迷惑
当技术执行官建立他们DepOps能力时,常常是从雇佣DevOps工程师开始。这不一定是最佳方法。DevOps工程师通常会偏向于DevOps技能的某一个方面。也就是说,更倾向于运营或者偏好开发,Shalom Berkowitz说。他是技术人事公司Mondo负责技术招聘的初级团队领导。
首先评估你的DevOps环境需要什么技能,并在寻找候选人时特别提及。譬如,说明在Linux中的经验需要,或者Ruby的知识,或者Puppet的合格记录,而不是招聘泛泛的DevOps人才,并假设申请人有符合需求的经验。
错误2:忽略时间线
无可否认,传统的瀑布式方法下工作更加封闭,更有秩序,James Stanger说,他是非营利性贸易协会CompTIA的高级产品主管。 相较而言,DevOps从本质来看就有让人混淆的可能,因为“每人都能影响到其他人的工作,”他说。 “引起的混乱会影响合理化开发,”Stanger说。也可能招致范围蔓延,因为每人都有可能在他们迭代时添加他们自己的好想法。 “他们会倾向于认为那不再是线性的,不再有时间线,我们只是一起工作,”他说。 经理需要在DevOps环境中坚持强烈的项目管理原则,忠诚于文档和截止日期以避免失控项目。 “发生变化的是实施时间表,不是对时间线的需要,”他补充道。“你在以更加循环的方式做事情,但是你仍然要朝着时间线前进。”
错误3:过快过多地向DevOps过渡
Jay Lyman是451 Research 的DevOps&IT Ops开发部门的首席分析师,他说他和他的同事们已经看到,组织将DevOps原则应用到太多的项目和/或太复杂的项目上,直到DevOps团队有足够的经验和专业知识来管理这些项目。 Lyman建议企业从小的开始,先将DevOps应用到一些容易实现的目标----通常是新的方案或者新的应用----来建立起所需的技能和流程。 他补充说,许多组织通过寻求和借鉴他们的网络运营和移动团队的战略实现了早期的成功,因为这些领域的性质,它们已经快速迭代和使用了DevOps原则。
错误4:忘记反馈回路
反馈回路驱动DevOps,但有时候关键利益相关者(例如数据库管理员和安全专家)被排除在外,导致一个有缺陷的最终产品,Lyman说。 “确保这个反馈循环中没有缺失链接,因为让这些利益相关者参与是你进步的方式,”他说。 同样,Stanger表示,组织需要帮助他们的DevOps人员了解反馈的重要性,并确保他们不会将其视为无端的批评。 “反馈不能被视为一个负面的事情,它必须被视为一个机会,以解决需要改进的事物,”他说。
好文章,需要你的鼓励
在我们的日常生活中,睡眠的重要性不言而喻。一个晚上没睡好,第二天的工作效率就会大打折扣,而充足的睡眠不仅能让我们恢复精力,还能帮助大脑整理和巩固当天学到的知识。有趣的是,AI模型竟然也表现出了类似的“睡眠需求”。
DeepSeek-AI团队通过创新的软硬件协同设计,仅用2048张GPU训练出性能卓越的DeepSeek-V3大语言模型,挑战了AI训练需要海量资源的传统观念。该研究采用多头潜在注意力、专家混合架构、FP8低精度训练等技术,大幅提升内存效率和计算性能,为AI技术的民主化和可持续发展提供了新思路。
尽管模型上下文协议(MCP)自11月推出以来用户数量快速增长,但金融机构等监管行业仍保持谨慎态度。银行等金融服务公司虽然在机器学习和算法方面是先驱,但对于MCP和Agent2Agent(A2A)系统的采用较为保守。监管企业通常只使用内部代理,因为其API集成需要经过多年审查以确保合规性和安全性。专家指出,MCP缺乏基本构建块,特别是在互操作性、通信标准、身份验证和审计跟踪方面。金融机构需要确保代理能够进行"了解您的客户"验证,并具备可验证的身份识别能力。
加拿大女王大学研究团队首次系统评估了大型视频语言模型的因果推理能力,发现即使最先进的AI在理解视频中事件因果关系方面表现极差,大多数模型准确率甚至低于随机猜测。研究创建了全球首个视频因果推理基准VCRBench,并提出了识别-推理分解法(RRD),通过任务分解显著提升了AI性能,最高改善幅度达25.2%。