数据湖的实施可以为分析所有类型的外部和内部数据,提供巨大的灵活性—必需具备三大要素。 格雷普韦恩,德克萨斯州——像任何其他工具或技术一样,数据湖是一种存储库和处理引擎,有它的优点和缺点。它的著名优点之一是,可以在不牺牲数据格式的情况下,摄取数据,为数据科学家提供更大的灵活性。
“将数据湖看作为你的疑问开发环境:你不知道你的疑问是什么,” Nick Heudecker说,他是Gartner的分析师。数据湖让你探索你所不知道的,从一个疑问引发另一个疑问。 缺点?没有适当的技能、集成和数据治理,数据湖的实施会迅速成为数据管理的噩梦。
在最近举行的Gartner Business Intelligence and Analytics Summit 上,Heudecker在他的演讲中列举了健全的数据湖的三个特征。
技能
数据科学家是任何数据湖中的必要因素。“他们拥有较高的领域理解力,较低的IT技能,但是你雇佣他们是因为数据分析技能,”Heudecker说。但是数据科学家并不是实施数据湖所需的唯一技能。Heudecker还指出: 数据工程师,运用数据科学家的研究发现,并与业务部门紧密合作; 业务专家,提供上下文; 软件工程师,专注于数据湖实施的具体细节 平民数据科学家,并不是必需的,但可以作为数据科学家的补充,即使他们的技能不完全成熟,能够完全胜任这个职能。
“数据科学是一项团队任务,”Heudecker说。“如果你想要一个成功的数据湖,你必须拥有一个成功的团队。”
集成
IT部门需要考虑如何把数据——从内部,以及越来越多的外部来源——汇总到数据湖中,这就意味着将湖与IT基础设施的其他部分相集成。 这就要求正确的数据初始分类和索引,以及数据安全,Heudecker说。
此外,CIO还不得不考虑分析技术。一些数据湖技术——比如Hadoop——可能“不支持高并发性和多租户,”Heudecker说。“他们可能不适合你选择的商业智能平台或控制面板工具。” Heudecker认为,数据分析也可以在数据湖外部产生,比如使用MySQL,SQL Server或MongoDB数据库。
数据治理和数据质量 数据治理和数据质量是确保分析正确的关键,但它们的标准和应用与传统环境中有所差别。太多可能会妨碍数据湖的分析发现;太少可能会给企业带来麻烦。
为了找到合适的界限,Heudecker推荐IT部门考虑数据基数,或数据与其他数据之间的关联,以及数据沿袭,或者“你是如何处理数据的,数据从何而来,谁改动了它,为什么,”他说。“我认为你可以放弃其他元素的治理,至少当你处于数据湖环境中。” Heudecker认为数据质量是数据湖中的“重大挑战”。他说,IT部门应该创建目录和“社交化”数据集,将其作为员工之间的一种沟通方式,它们的相关数据质量和它们的用处。
在实施数据湖之前,IT部门应该考虑业务的目标,数据湖将如何帮助实现这些目标,以及是否拥有必要的技能。 “你不必将数百万美元投资到这个基础设施。你可以从云中开始,你可以从简便和免费的工具开始,如果你今天没有数据科学团队,你可以在实施数据湖的同时打造这一团队,”Heudecker说。
好文章,需要你的鼓励
从浙江安吉的桌椅,到广东佛山的沙发床垫、河南洛阳的钢制家具,再到福建福州的竹藤制品,中国各大高度专业化的家具产业带,都在不约而同地探索各自的数字化出海路径。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。