ZD至顶网CIO与应用频道 01月07日 北京消息:造价行业一直被比作“老中医”行业,认为造价师有经验就有价值。为什么,无非是其自身通过项目的实践,积累了大量的经验数据。
数据和经验跟随员工流动,企业就无法从公司层面进行数据和经验累积、分析甚至有效利用,造成大量的信息资源白白浪费。
造价行业亟需有效地方式,对庞大的数据和经验值进行挖掘,利用其价值,实现降低成本,提升效益的目的。
随着信息化的建设,大数据涌入工程造价行业,这对造价行业来说,可谓是一次质的发展!
建设行业工程体量大,周期长,涉及范围广,材价数据庞杂难获取,传统数据信息录入方式耗时耗力等,导致传统造价行业数据信息的利用仍停留在初加工阶段,海量的数据只是摆设,数据价值仍是空谈。
大数据的出现,不在于掌握庞大的数据信息,而在于将这些含有意义的数据进行专业化处理,提高对数据的加工能力,通过加工实现数据的增值。
造价通-中国首家建设行业大数据服务平台,以大数据为核心,打造建设工程造价行业数据应用新体系。
1、海量材价数据一键查询。造价通推出查价服务,材价数据覆盖326个城市超过5亿条价格信息,首创五大行业信息价,更有遥遥领先同行1个月数据更新,提供最全面,最及时,最精准,最专业的数据信息。
2、创建非标材料设备询价圈。专业询价工程师一对一服务,开启7*24小时秒回时代,全国12万家诚信供应商精准报价,打造造价行业信息资源共享数据平台。
3、打造企业数据解决方案。企业云端数据库,通过云存储空间自动分类存储建材信息;通过权限管理、任务分配、技术维护等方式保证数据库安全可靠;通过数据库的统计分类功能,进行实时监控,控制数据的有效性。
4、历史数据分析,使数据循环利用。通过对历史造价大数据分析测算,得出该建材的历史价格走势,得出造价指标指数,生成价格走势图,由此预测材料在近期的波动幅度,更好地对造价成本进行管控。
以大数据技术作为支撑,造价通实现了造价行业海量数据录入、存储、整合、分析、指导的闭合性全过程。造价行业的数据不再只是苍白无力的量大,价值的温度和深度慢慢彰显。
大数据技术更好地满足造价行业现阶段的需求,是顺应时代发展的产物。工程造价行业企业要建立信息化的意识,以开放、务实、包容的态度理解和运用科学技术手段,不断提升企业的竞争力,谋求长远的发展!
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。