在企业全面拥抱AI的关键窗口期,如何将庞大而复杂的历史遗留系统成功迁移上云,成为决定竞争力的“前置条件”。亚马逊云科技近日正式推出新一代企业现代化服务 Amazon Transform,通过Agentic AI加速企业核心工作负载向云原生架构迁移,将原本耗时18个月以上的传统流程压缩至数周甚至数天。
从“能不能上云”到“如何更快上云”
据了解,尽管超过六成企业已将AI投资列入2025年优先事项,但依旧有75%的关键系统运行在本地,其中不乏COBOL主机、.NET架构和VMware环境。这些“老系统”并非不能动,而是动起来代价极高。传统迁移手段依赖大量人工规划与代码重构,流程复杂,风险高,速度慢,往往成为企业AI战略落地前最难的一关。
Amazon Transform带来的改变,是用AI来“搬家”。这项服务基于亚马逊云科技在大模型、图神经网络、自动推理等方向的技术积累,推出了三大智能agent,分别面向.NET、mainframe和VMware场景,可实现自动依赖分析、代码转换、测试验证与架构优化。
三大核心场景,直击企业“迁移痛点”
在.NET 现代化转向 Linux 方面,企业借助 Amazon Transform 的.NET agent,可将基于 Windows 的.NET 应用自动转换为跨平台的.NET 版本。这一过程不仅能保持业务逻辑的一致性,还能节省最多 40% 的许可证和运维成本。客户 Grupo Tress Internacional 分享使用体验时提到,通过该服务,迁移过程中的工作量减少了 70%,预计总开发时间将减少80%。
对于 Mainframe 大型机现代化,面对 COBOL、JCL、DB2 等 “上世纪遗产” 程序,Amazon Transform的大型机agent可自动进行解析与模块化处理,将其转换为 Java/Postgres 等云架构形式。AWS 强调,得益于图神经网络和状态转移图等 AI 工具的运用,依赖梳理和文档生成的时间大幅减少,真正实现了将大型机现代化从以 “年” 为单位的漫长周期,压缩至 “月级”。
在 VMware 网络自动化迁移场景中,针对传统数据中心复杂的 VM 配置和网络结构,Amazon Transform的VMware agent 可自动完成等效转换,并生成合理的迁移批次方案。客户 SourceFuse 反馈,使用该服务后,整体迁移流程执行时间最多缩短 90%,人工干预减少 80%。
一个对话界面,一个跨团队协作平台
Amazon Transform的另一项创新是“可对话”的AI体验。企业可通过聊天式界面描述迁移目标,系统则自动生成任务方案,并允许IT、开发、业务团队协同参与评估与调整。这不仅降低了使用门槛,也显著提升了跨职能项目的推进效率。
结合Amazon Q Developer、Bedrock基础模型服务以及自动推理能力,Amazon Transform已成为亚马逊云科技“AI驱动云迁移”战略的关键组件,象征着从传统手动迁移工具向“智能迁移助理”的跃迁。
迁移,是迈向AI的前提
亚马逊云科技的判断很明确:企业AI化的关键第一步不是买模型、建平台,而是先完成上云与架构现代化。Amazon Transform的目标,正是以Agentic AI作为“加速器”,扫清企业从遗留系统走向AI Ready的道路。
对于那些仍在纠结“是否迁移”的企业,Amazon Transform提供了一个更现实的选项——快速、低风险、成本可控的现代化路径。
AI的未来正在到来,而上云的窗口却在缩小。Amazon Transform,也许正是企业抓住下一轮数字红利的那把钥匙。
好文章,需要你的鼓励
本文探讨了AI发展的未来趋势,详细分析了六条有望实现通用人工智能(AGI)的技术路径。随着生成式AI和大语言模型面临发展瓶颈,业界开始将目光转向其他AI发展方向。这六条路径包括神经符号AI、神经形态AI、具身AI、多智能体AI、以人为中心的AI和量子AI。每种路径都有其独特优势和挑战,可能单独或组合推动AI进入下一个发展阶段,最终实现与人类智能相当的AGI系统。
约翰霍普金斯大学研究团队发现VAR模型的马尔可夫变体本质上是离散扩散模型,提出SRDD方法。通过应用扩散模型技术如分类器自由引导、令牌重采样等,SRDD相比VAR在图像质量上提升15-20%,同时具备更好的零样本性能。这项研究架起了自回归模型与扩散模型的理论桥梁,为视觉生成技术发展开启新方向。
培生公司第三季度销售增长加速,并预示年底表现更强劲,但其AI应用可能是更重要的发展。该公司虚拟学习部门销售额激增17%,学生注册人数攀升。培生运营的在线学校将AI工具嵌入课程材料中,公司表示有越来越多证据显示这些工具帮助学生取得更好成绩。公司推出了AI学习内容组合,包括AI素养模块和融合人工导师与AI学习工具的视频平台。
微软亚洲研究院推出CAD-Tokenizer技术,首次实现AI通过自然语言指令进行3D模型设计和编辑的统一处理。该技术通过专门的CAD分词器和原语级理解机制,让AI能像设计师一样理解设计逻辑,大幅提升了设计精度和效率,有望推动工业设计的民主化进程。