在企业全面拥抱AI的关键窗口期,如何将庞大而复杂的历史遗留系统成功迁移上云,成为决定竞争力的“前置条件”。亚马逊云科技近日正式推出新一代企业现代化服务 Amazon Transform,通过Agentic AI加速企业核心工作负载向云原生架构迁移,将原本耗时18个月以上的传统流程压缩至数周甚至数天。
从“能不能上云”到“如何更快上云”
据了解,尽管超过六成企业已将AI投资列入2025年优先事项,但依旧有75%的关键系统运行在本地,其中不乏COBOL主机、.NET架构和VMware环境。这些“老系统”并非不能动,而是动起来代价极高。传统迁移手段依赖大量人工规划与代码重构,流程复杂,风险高,速度慢,往往成为企业AI战略落地前最难的一关。
Amazon Transform带来的改变,是用AI来“搬家”。这项服务基于亚马逊云科技在大模型、图神经网络、自动推理等方向的技术积累,推出了三大智能agent,分别面向.NET、mainframe和VMware场景,可实现自动依赖分析、代码转换、测试验证与架构优化。
三大核心场景,直击企业“迁移痛点”
在.NET 现代化转向 Linux 方面,企业借助 Amazon Transform 的.NET agent,可将基于 Windows 的.NET 应用自动转换为跨平台的.NET 版本。这一过程不仅能保持业务逻辑的一致性,还能节省最多 40% 的许可证和运维成本。客户 Grupo Tress Internacional 分享使用体验时提到,通过该服务,迁移过程中的工作量减少了 70%,预计总开发时间将减少80%。
对于 Mainframe 大型机现代化,面对 COBOL、JCL、DB2 等 “上世纪遗产” 程序,Amazon Transform的大型机agent可自动进行解析与模块化处理,将其转换为 Java/Postgres 等云架构形式。AWS 强调,得益于图神经网络和状态转移图等 AI 工具的运用,依赖梳理和文档生成的时间大幅减少,真正实现了将大型机现代化从以 “年” 为单位的漫长周期,压缩至 “月级”。
在 VMware 网络自动化迁移场景中,针对传统数据中心复杂的 VM 配置和网络结构,Amazon Transform的VMware agent 可自动完成等效转换,并生成合理的迁移批次方案。客户 SourceFuse 反馈,使用该服务后,整体迁移流程执行时间最多缩短 90%,人工干预减少 80%。
一个对话界面,一个跨团队协作平台
Amazon Transform的另一项创新是“可对话”的AI体验。企业可通过聊天式界面描述迁移目标,系统则自动生成任务方案,并允许IT、开发、业务团队协同参与评估与调整。这不仅降低了使用门槛,也显著提升了跨职能项目的推进效率。
结合Amazon Q Developer、Bedrock基础模型服务以及自动推理能力,Amazon Transform已成为亚马逊云科技“AI驱动云迁移”战略的关键组件,象征着从传统手动迁移工具向“智能迁移助理”的跃迁。
迁移,是迈向AI的前提
亚马逊云科技的判断很明确:企业AI化的关键第一步不是买模型、建平台,而是先完成上云与架构现代化。Amazon Transform的目标,正是以Agentic AI作为“加速器”,扫清企业从遗留系统走向AI Ready的道路。
对于那些仍在纠结“是否迁移”的企业,Amazon Transform提供了一个更现实的选项——快速、低风险、成本可控的现代化路径。
AI的未来正在到来,而上云的窗口却在缩小。Amazon Transform,也许正是企业抓住下一轮数字红利的那把钥匙。
好文章,需要你的鼓励
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。