在企业全面拥抱AI的关键窗口期,如何将庞大而复杂的历史遗留系统成功迁移上云,成为决定竞争力的“前置条件”。亚马逊云科技近日正式推出新一代企业现代化服务 Amazon Transform,通过Agentic AI加速企业核心工作负载向云原生架构迁移,将原本耗时18个月以上的传统流程压缩至数周甚至数天。
从“能不能上云”到“如何更快上云”
据了解,尽管超过六成企业已将AI投资列入2025年优先事项,但依旧有75%的关键系统运行在本地,其中不乏COBOL主机、.NET架构和VMware环境。这些“老系统”并非不能动,而是动起来代价极高。传统迁移手段依赖大量人工规划与代码重构,流程复杂,风险高,速度慢,往往成为企业AI战略落地前最难的一关。
Amazon Transform带来的改变,是用AI来“搬家”。这项服务基于亚马逊云科技在大模型、图神经网络、自动推理等方向的技术积累,推出了三大智能agent,分别面向.NET、mainframe和VMware场景,可实现自动依赖分析、代码转换、测试验证与架构优化。
三大核心场景,直击企业“迁移痛点”
在.NET 现代化转向 Linux 方面,企业借助 Amazon Transform 的.NET agent,可将基于 Windows 的.NET 应用自动转换为跨平台的.NET 版本。这一过程不仅能保持业务逻辑的一致性,还能节省最多 40% 的许可证和运维成本。客户 Grupo Tress Internacional 分享使用体验时提到,通过该服务,迁移过程中的工作量减少了 70%,预计总开发时间将减少80%。
对于 Mainframe 大型机现代化,面对 COBOL、JCL、DB2 等 “上世纪遗产” 程序,Amazon Transform的大型机agent可自动进行解析与模块化处理,将其转换为 Java/Postgres 等云架构形式。AWS 强调,得益于图神经网络和状态转移图等 AI 工具的运用,依赖梳理和文档生成的时间大幅减少,真正实现了将大型机现代化从以 “年” 为单位的漫长周期,压缩至 “月级”。
在 VMware 网络自动化迁移场景中,针对传统数据中心复杂的 VM 配置和网络结构,Amazon Transform的VMware agent 可自动完成等效转换,并生成合理的迁移批次方案。客户 SourceFuse 反馈,使用该服务后,整体迁移流程执行时间最多缩短 90%,人工干预减少 80%。
一个对话界面,一个跨团队协作平台
Amazon Transform的另一项创新是“可对话”的AI体验。企业可通过聊天式界面描述迁移目标,系统则自动生成任务方案,并允许IT、开发、业务团队协同参与评估与调整。这不仅降低了使用门槛,也显著提升了跨职能项目的推进效率。
结合Amazon Q Developer、Bedrock基础模型服务以及自动推理能力,Amazon Transform已成为亚马逊云科技“AI驱动云迁移”战略的关键组件,象征着从传统手动迁移工具向“智能迁移助理”的跃迁。
迁移,是迈向AI的前提
亚马逊云科技的判断很明确:企业AI化的关键第一步不是买模型、建平台,而是先完成上云与架构现代化。Amazon Transform的目标,正是以Agentic AI作为“加速器”,扫清企业从遗留系统走向AI Ready的道路。
对于那些仍在纠结“是否迁移”的企业,Amazon Transform提供了一个更现实的选项——快速、低风险、成本可控的现代化路径。
AI的未来正在到来,而上云的窗口却在缩小。Amazon Transform,也许正是企业抓住下一轮数字红利的那把钥匙。
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。