在企业全面拥抱AI的关键窗口期,如何将庞大而复杂的历史遗留系统成功迁移上云,成为决定竞争力的“前置条件”。亚马逊云科技近日正式推出新一代企业现代化服务 Amazon Transform,通过Agentic AI加速企业核心工作负载向云原生架构迁移,将原本耗时18个月以上的传统流程压缩至数周甚至数天。
从“能不能上云”到“如何更快上云”
据了解,尽管超过六成企业已将AI投资列入2025年优先事项,但依旧有75%的关键系统运行在本地,其中不乏COBOL主机、.NET架构和VMware环境。这些“老系统”并非不能动,而是动起来代价极高。传统迁移手段依赖大量人工规划与代码重构,流程复杂,风险高,速度慢,往往成为企业AI战略落地前最难的一关。
Amazon Transform带来的改变,是用AI来“搬家”。这项服务基于亚马逊云科技在大模型、图神经网络、自动推理等方向的技术积累,推出了三大智能agent,分别面向.NET、mainframe和VMware场景,可实现自动依赖分析、代码转换、测试验证与架构优化。
三大核心场景,直击企业“迁移痛点”
在.NET 现代化转向 Linux 方面,企业借助 Amazon Transform 的.NET agent,可将基于 Windows 的.NET 应用自动转换为跨平台的.NET 版本。这一过程不仅能保持业务逻辑的一致性,还能节省最多 40% 的许可证和运维成本。客户 Grupo Tress Internacional 分享使用体验时提到,通过该服务,迁移过程中的工作量减少了 70%,预计总开发时间将减少80%。
对于 Mainframe 大型机现代化,面对 COBOL、JCL、DB2 等 “上世纪遗产” 程序,Amazon Transform的大型机agent可自动进行解析与模块化处理,将其转换为 Java/Postgres 等云架构形式。AWS 强调,得益于图神经网络和状态转移图等 AI 工具的运用,依赖梳理和文档生成的时间大幅减少,真正实现了将大型机现代化从以 “年” 为单位的漫长周期,压缩至 “月级”。
在 VMware 网络自动化迁移场景中,针对传统数据中心复杂的 VM 配置和网络结构,Amazon Transform的VMware agent 可自动完成等效转换,并生成合理的迁移批次方案。客户 SourceFuse 反馈,使用该服务后,整体迁移流程执行时间最多缩短 90%,人工干预减少 80%。
一个对话界面,一个跨团队协作平台
Amazon Transform的另一项创新是“可对话”的AI体验。企业可通过聊天式界面描述迁移目标,系统则自动生成任务方案,并允许IT、开发、业务团队协同参与评估与调整。这不仅降低了使用门槛,也显著提升了跨职能项目的推进效率。
结合Amazon Q Developer、Bedrock基础模型服务以及自动推理能力,Amazon Transform已成为亚马逊云科技“AI驱动云迁移”战略的关键组件,象征着从传统手动迁移工具向“智能迁移助理”的跃迁。
迁移,是迈向AI的前提
亚马逊云科技的判断很明确:企业AI化的关键第一步不是买模型、建平台,而是先完成上云与架构现代化。Amazon Transform的目标,正是以Agentic AI作为“加速器”,扫清企业从遗留系统走向AI Ready的道路。
对于那些仍在纠结“是否迁移”的企业,Amazon Transform提供了一个更现实的选项——快速、低风险、成本可控的现代化路径。
AI的未来正在到来,而上云的窗口却在缩小。Amazon Transform,也许正是企业抓住下一轮数字红利的那把钥匙。
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。