Gartner公司发布了2024年数据与分析(D&A)重要趋势,这些趋势正在带来包括组织、人事问题在内的各种挑战。
Gartner高级研究总监方琦表示:“AI的力量以及日益重要的生成式AI正在改变人们的工作方式、团队协作方式和流程运作方式。在这场技术变革中,未能成功实现转型并有效利用D&A,特别是无法有效利用AI的企业机构,将难以取得成功。”
在近日的Gartner数据与分析峰会上,Gartner分析师介绍了IT领导者必须把握并纳入其D&A战略的重要数据与分析趋势(见图一)。
图一、2024年数据与分析重要趋势
资料来源:Gartner(2024年4月)
趋势 1:押注业务
随着AI不断推进各行各业战略层面上的变革,D&A领导者必须展现出“押注AI业务”的技能并赢得信任,才能领导企业内部的AI战略。
方琦表示:“D&A领导者必须将他们正在开发的能力与其为了实现企业机构所需业务成果所做的工作挂钩,以此展示他们对企业机构的价值。如果做不到这一点,那么资源分配不当、投资利用不足等问题将继续升级,企业机构也不会将领导内部AI战略的重任交给D&A。”
由于AI正在改变企业的运营方式,企业将面临一场成本灾难。D&A领导者必须采取行动落实财务运营(FinOps)实践,以此建立和执行标准并减少支出。
Gartner预测,到 2026 年,如果首席数据和分析官(CDAO)能够成为首席财务官在创造业务价值方面值得信赖的顾问和合作伙伴,那么D&A将升级为推动企业战略增长的动力。
趋势2:可管理的复杂性
许多D&A系统都很脆弱,并且它们的冗余会造成混乱和增加成本。方琦表示;“领先的企业正在努力将这种混乱转化为可管理的复杂性。复杂性本质上不易应对,但认识到这一点能够切实了解环境的动态变化,帮助D&A团队采取适当的行动。”
为了管理复杂性,D&A领导者需要利用AI工具实现生产自动化和提高生产力,包括投资于数据管理的加强、决策自动化以及像自然语言处理(NLP)这样的分析能力。Gartner预测,到2025年,CDAO将把数据编织视为成功应对数据管理复杂性的主导因素,把重点放在增值的数字业务优先事项上。
趋势3:取得信任
随着生成式AI可及性和效率的日益提高,如何应对这个数据可靠性不断受到质疑的世界已变成一大难题。企业内部信任缺乏、对数据价值和质量的担忧以及围绕AI的法规正在导致不信任泛滥。
方琦表示:“不可信的数据可能无法用来作出决策”。
“D&A领导者应使用决策智能实践来建立对数据的信任并监视决策过程和结果。此外,为了取得利益相关方的信任,落实有效的AI管理和负责任的AI实践至关重要,例如建立数据的AI就绪性,也就是说数据要符合道德规范、安全、无偏见并且丰富到能够做出更加准确的回答。”
趋势4:被赋能的员工
方琦表示:“将AI应用于D&A必须能够赋能员工,而不是让他们感到受到威胁或沮丧,这一点十分重要。”
企业机构必须投资于培养员工的AI素养、使用具有适应能力的治理实践实现有效的治理并落实基于信任的信息资产管理办法,帮助个人知晓他们所使用的信息的出处。
方琦表示:“AI培训的重点不止是人数,还需要采取不同的方法。企业机构要认识到专家级AI用户所需具备的技能将与其他用户截然不同。Gartner预测到2027年,由于企业未能从生成式AI中获得预期的价值,半数以上的CDAO将获得数据素养和AI素养项目的资金。”
好文章,需要你的鼓励
香港中文大学与华为诺亚方舟实验室合作开发了PreMoe框架,解决了大型混合专家模型(MoE)在内存受限设备上的部署难题。研究团队发现MoE模型中的专家表现出明显的任务专业化特征,据此提出了概率专家精简(PEP)和任务自适应专家检索(TAER)两大核心技术。实验证明,DeepSeek-R1 671B模型在精简50%专家后仍保持97.2%的MATH500准确率,内存需求降至688GB;而更激进的精简方案(减少87.5%专家)也能保持72.0%的准确率。该方法适用于多种MoE架构,为强大AI系统的广泛部署铺平了道路。
SCIENCEBOARD是一项开创性研究,旨在评估多模态自主智能体在真实科学工作流中的表现。研究团队构建了一个包含169个高质量任务的基准测试,涵盖生物化学、天文学等六个科学领域,并开发了一个真实环境让智能体通过CLI或GUI接口与科学软件交互。实验评估表明,即使是最先进的模型在这些复杂科学任务上的成功率也仅为15%,远低于人类表现,揭示了当前技术的局限性并为未来科学智能体的发展提供了宝贵见解。
帝国理工学院的研究团队开发了AlphaMed,这是首个仅通过极简规则强化学习就能培养医疗推理能力的AI模型,无需依赖传统的思维链示范数据。通过分析数据信息丰富度和难度分布的影响,研究发现高信息量的医疗问答数据是推理能力的关键驱动因素。AlphaMed在六个医疗问答基准上取得了领先成绩,甚至超越了更大的封闭源模型,同时展现出自发的步骤推理能力,为医疗AI发展提供了更加开放、高效的新路径。
Alita是一种新型通用AI代理系统,采用极简设计理念,以"最小预定义,最大自我进化"为原则构建。由普林斯顿大学等多家机构研究团队开发的Alita,只配备一个核心能力和少量通用模块,能自主创建所需工具并重用为模型上下文协议(MCPs)。实验显示,Alita在GAIA基准测试上达到87.27%的通过率,超越包括OpenAI Deep Research在内的复杂系统,证明简约设计可带来卓越性能。