Gartner公司发布了2024年数据与分析(D&A)重要趋势,这些趋势正在带来包括组织、人事问题在内的各种挑战。
Gartner高级研究总监方琦表示:“AI的力量以及日益重要的生成式AI正在改变人们的工作方式、团队协作方式和流程运作方式。在这场技术变革中,未能成功实现转型并有效利用D&A,特别是无法有效利用AI的企业机构,将难以取得成功。”
在近日的Gartner数据与分析峰会上,Gartner分析师介绍了IT领导者必须把握并纳入其D&A战略的重要数据与分析趋势(见图一)。
图一、2024年数据与分析重要趋势

资料来源:Gartner(2024年4月)
趋势 1:押注业务
随着AI不断推进各行各业战略层面上的变革,D&A领导者必须展现出“押注AI业务”的技能并赢得信任,才能领导企业内部的AI战略。
方琦表示:“D&A领导者必须将他们正在开发的能力与其为了实现企业机构所需业务成果所做的工作挂钩,以此展示他们对企业机构的价值。如果做不到这一点,那么资源分配不当、投资利用不足等问题将继续升级,企业机构也不会将领导内部AI战略的重任交给D&A。”
由于AI正在改变企业的运营方式,企业将面临一场成本灾难。D&A领导者必须采取行动落实财务运营(FinOps)实践,以此建立和执行标准并减少支出。
Gartner预测,到 2026 年,如果首席数据和分析官(CDAO)能够成为首席财务官在创造业务价值方面值得信赖的顾问和合作伙伴,那么D&A将升级为推动企业战略增长的动力。
趋势2:可管理的复杂性
许多D&A系统都很脆弱,并且它们的冗余会造成混乱和增加成本。方琦表示;“领先的企业正在努力将这种混乱转化为可管理的复杂性。复杂性本质上不易应对,但认识到这一点能够切实了解环境的动态变化,帮助D&A团队采取适当的行动。”
为了管理复杂性,D&A领导者需要利用AI工具实现生产自动化和提高生产力,包括投资于数据管理的加强、决策自动化以及像自然语言处理(NLP)这样的分析能力。Gartner预测,到2025年,CDAO将把数据编织视为成功应对数据管理复杂性的主导因素,把重点放在增值的数字业务优先事项上。
趋势3:取得信任
随着生成式AI可及性和效率的日益提高,如何应对这个数据可靠性不断受到质疑的世界已变成一大难题。企业内部信任缺乏、对数据价值和质量的担忧以及围绕AI的法规正在导致不信任泛滥。
方琦表示:“不可信的数据可能无法用来作出决策”。
“D&A领导者应使用决策智能实践来建立对数据的信任并监视决策过程和结果。此外,为了取得利益相关方的信任,落实有效的AI管理和负责任的AI实践至关重要,例如建立数据的AI就绪性,也就是说数据要符合道德规范、安全、无偏见并且丰富到能够做出更加准确的回答。”
趋势4:被赋能的员工
方琦表示:“将AI应用于D&A必须能够赋能员工,而不是让他们感到受到威胁或沮丧,这一点十分重要。”
企业机构必须投资于培养员工的AI素养、使用具有适应能力的治理实践实现有效的治理并落实基于信任的信息资产管理办法,帮助个人知晓他们所使用的信息的出处。
方琦表示:“AI培训的重点不止是人数,还需要采取不同的方法。企业机构要认识到专家级AI用户所需具备的技能将与其他用户截然不同。Gartner预测到2027年,由于企业未能从生成式AI中获得预期的价值,半数以上的CDAO将获得数据素养和AI素养项目的资金。”
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。