Gartner公司发布了2024年数据与分析(D&A)重要趋势,这些趋势正在带来包括组织、人事问题在内的各种挑战。
Gartner高级研究总监方琦表示:“AI的力量以及日益重要的生成式AI正在改变人们的工作方式、团队协作方式和流程运作方式。在这场技术变革中,未能成功实现转型并有效利用D&A,特别是无法有效利用AI的企业机构,将难以取得成功。”
在近日的Gartner数据与分析峰会上,Gartner分析师介绍了IT领导者必须把握并纳入其D&A战略的重要数据与分析趋势(见图一)。
图一、2024年数据与分析重要趋势

资料来源:Gartner(2024年4月)
趋势 1:押注业务
随着AI不断推进各行各业战略层面上的变革,D&A领导者必须展现出“押注AI业务”的技能并赢得信任,才能领导企业内部的AI战略。
方琦表示:“D&A领导者必须将他们正在开发的能力与其为了实现企业机构所需业务成果所做的工作挂钩,以此展示他们对企业机构的价值。如果做不到这一点,那么资源分配不当、投资利用不足等问题将继续升级,企业机构也不会将领导内部AI战略的重任交给D&A。”
由于AI正在改变企业的运营方式,企业将面临一场成本灾难。D&A领导者必须采取行动落实财务运营(FinOps)实践,以此建立和执行标准并减少支出。
Gartner预测,到 2026 年,如果首席数据和分析官(CDAO)能够成为首席财务官在创造业务价值方面值得信赖的顾问和合作伙伴,那么D&A将升级为推动企业战略增长的动力。
趋势2:可管理的复杂性
许多D&A系统都很脆弱,并且它们的冗余会造成混乱和增加成本。方琦表示;“领先的企业正在努力将这种混乱转化为可管理的复杂性。复杂性本质上不易应对,但认识到这一点能够切实了解环境的动态变化,帮助D&A团队采取适当的行动。”
为了管理复杂性,D&A领导者需要利用AI工具实现生产自动化和提高生产力,包括投资于数据管理的加强、决策自动化以及像自然语言处理(NLP)这样的分析能力。Gartner预测,到2025年,CDAO将把数据编织视为成功应对数据管理复杂性的主导因素,把重点放在增值的数字业务优先事项上。
趋势3:取得信任
随着生成式AI可及性和效率的日益提高,如何应对这个数据可靠性不断受到质疑的世界已变成一大难题。企业内部信任缺乏、对数据价值和质量的担忧以及围绕AI的法规正在导致不信任泛滥。
方琦表示:“不可信的数据可能无法用来作出决策”。
“D&A领导者应使用决策智能实践来建立对数据的信任并监视决策过程和结果。此外,为了取得利益相关方的信任,落实有效的AI管理和负责任的AI实践至关重要,例如建立数据的AI就绪性,也就是说数据要符合道德规范、安全、无偏见并且丰富到能够做出更加准确的回答。”
趋势4:被赋能的员工
方琦表示:“将AI应用于D&A必须能够赋能员工,而不是让他们感到受到威胁或沮丧,这一点十分重要。”
企业机构必须投资于培养员工的AI素养、使用具有适应能力的治理实践实现有效的治理并落实基于信任的信息资产管理办法,帮助个人知晓他们所使用的信息的出处。
方琦表示:“AI培训的重点不止是人数,还需要采取不同的方法。企业机构要认识到专家级AI用户所需具备的技能将与其他用户截然不同。Gartner预测到2027年,由于企业未能从生成式AI中获得预期的价值,半数以上的CDAO将获得数据素养和AI素养项目的资金。”
好文章,需要你的鼓励
Lumen Technologies对美国网络的数据中心和云连接进行重大升级,在16个高连接城市的70多个第三方数据中心提供高达400Gbps以太网和IP服务。该光纤网络支持客户按需开通服务,几分钟内完成带宽配置,最高可扩展至400Gbps且按使用量付费。升级后的网络能够轻松连接数据中心和云接入点,扩展企业应用,并应对AI和数据密集型需求波动。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
RtBrick研究警告,运营商面临AI和流媒体服务带宽需求"压倒性"风险。调查显示87%运营商预期客户将要求更高宽带速度,但81%承认现有架构无法应对下一波AI和流媒体流量。84%反映客户期望已超越网络能力。尽管91%愿意投资分解式网络,95%计划五年内部署,但仅2%正在实施。主要障碍包括领导层缺乏决策支持、运营转型复杂性和专业技能短缺。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。