近日,可信的企业人工智能数据公司肯睿Cloudera宣布进一步扩大其与NVIDIA的合作。Cloudera Powered by NVIDIA将把NVIDIA AI Enterprise软件平台中的企业级NVIDIA NIM微服务集成到Cloudera Data Platform上的AI/ML工作流程服务Cloudera Machine Learning中,为客户提供快速、安全和精简化的生产级端到端生成式AI工作流程。
结合专为大语言模型(LLM)优化的综合全栈平台后,企业数据在推动企业生成式AI应用从试点到生产的过程中,发挥了至关重要的作用。借助NVIDIA NIM和NeMo Retriever微服务,开发人员能够将AI模型与他们的业务数据(包括文本、图像和各种可视化图,如条形图、折线图和饼图等)相关联,生成高度准确且符合上下文语境的回答。NVIDIA AI Enterprise提供专为构建、自定义和部署企业级LLM而优化的运行时,使用上述微服务的开发人员可以通过它部署应用。Cloudera Machine Learning充分利用NVIDIA微服务,将高性能AI工作流程、AI平台软件和加速计算应用于数据,使客户能够从他们委托Cloudera管理的企业数据中挖掘出价值。
肯睿Cloudera 将推出多项集成NVIDIA微服务的功能。Cloudera Machine Learning 将通过集成NVIDIA微服务支持的模型和应用服务,提升所有工作负载的模型推理性能。借助这项全新的AI模型服务功能,客户部署在公有云和私有云上的模型都能实现容错、低延迟服务和自动扩展。此外,Cloudera Machine Learning 还将提供集成式 NVIDIA NeMo Retriever 微服务,简化自定义 LLM 与企业数据的连接。用户可通过这项功能构建基于检索增强生成(RAG)的生产级应用。
Cloudera此前曾与NVIDIA合作,通过将NVIDIA RAPIDS Accelerator for Apache Spark集成到Cloudera Data Platform,利用GPU优化数据处理。现在,随着NVIDIA微服务计划的加入以及与NVIDIA AI Enterprise 的集成,Cloudera Data Platform 将成为可提供精简化端到端混合 AI 管道的平台。
肯睿Cloudera亚太区高级副总裁Remus Lim表示:“NVIDIA在人工智能计算领域的领先地位与Cloudera在数据管理领域深厚的专业积累相得益彰。通过这次合作,我们将赋能客户创建出能够产出高度精确数据和见解的模型。这些模型得到企业的信赖,并能在一个安全的机器学习(ML)环境下运作,满足日新月异的需求。我们很高兴能够助力客户加速其人工智能之旅,无缝地从AI的探索和实验阶段过渡到在整个组织内的大规模部署。”
未来,各个行业的企业都将能够更加快速、直观地构建、自定义和部署支持变革性生成式AI的 LLM,包括加快开发时间的编码协作机器人、自动执行客户互动和服务的聊天机器人、快速处理文档的文本摘要应用、精简化的上下文搜索等各种应用。这些创新技术使整个企业的数据和高级AI流程变得更加简单和快捷,最大程度地缩短了实现业务价值的时间,增加了收入来源并优化了成本。
肯睿Cloudera AI/ML产品副总裁Priyank Patel表示:“Cloudera正在通过集成NVIDIA NIM和CUDA-X微服务,为Cloudera Machine Learning提供助力,帮助客户将AI热潮转化为实实在在的业务成果。除了为客户提供强大的生成式AI功能和性能外,此次集成的成果还将助力企业做出更加准确且及时的决策,同时减少预测中的不准确性、幻觉和错误。这些都是适应当今数据环境的关键因素。”
NVIDIA企业产品副总裁 Justin Boitano 表示:“企业迫切希望将其海量数据运用于生成式AI,创造出定制化的辅助系统和生产力工具。通过将NVIDIA NIM微服务集成到Cloudera Data Platform,开发人员能够更加轻松且灵活地部署推动业务转型的LLM。”
Cloudera将在AI时代的开发者峰会NVIDIA GTC上展示全新的AI功能。本届GTC于3月18日至21日在加利福尼亚州圣何塞市的圣何塞麦克内里会展中心举行,参加者包括影响AI和加速计算领域下一步发展方向的企业与创新者。
好文章,需要你的鼓励
美国网络安全和基础设施安全局指示联邦机构修补影响思科ASA 5500-X系列防火墙设备的两个零日漏洞CVE-2025-20362和CVE-2025-20333。这些漏洞可绕过VPN身份验证并获取root访问权限,已被黑客积极利用。攻击与国家支持的ArcaneDoor黑客活动有关,黑客通过漏洞安装bootkit恶意软件并操控只读存储器实现持久化。思科已发布补丁,CISA要求机构清点易受攻击系统并在今日前完成修补。
康考迪亚大学研究团队通过对比混合量子-经典神经网络与传统模型在三个基准数据集上的表现,发现量子增强模型在准确率、训练速度和资源效率方面均显著优于传统方法。研究显示混合模型的优势随数据集复杂度提升而增强,在CIFAR100上准确率提升9.44%,训练速度提升5-12倍,且参数更少。该成果为实用化量子增强人工智能铺平道路。
TimeWave是一款功能全面的计时器应用,超越了苹果自带时钟应用的功能。它支持创建流式计时器,让用户可以设置连续的任务计时,帮助专注工作。应用采用简洁的黑白设计,融入了Liquid Glass元素。内置冥想、番茄工作法、20-20-20护眼等多种计时模式,支持实时活动显示和Siri快捷指令。免费版提供基础功能,高级版需付费订阅。
沙特KAUST大学团队开发了专门针对阿拉伯语的AI模型家族"Hala",通过创新的"翻译再调优"技术路线,将高质量英语指令数据转化为450万规模的阿拉伯语语料库,训练出350M到9B参数的多个模型。在阿拉伯语专项测试中,Hala在同规模模型中表现最佳,证明了语言专门化策略的有效性,为阿拉伯语AI发展和其他语言的专门化模型提供了可复制的技术方案。