根据Gartner公司的预测,到2026 年,30%的企业将因为人工智能(AI)生成的人脸生物识别深度伪造攻击而认为此类身份认证和验证解决方案不再能够起到可靠的作用。
Gartner研究副总裁Akif Khan表示:“过去十年在AI领域出现的几个拐点使创建合成图像成为了可能。这些人工生成的真实人脸图像被称为深度伪造,恶意行为者可利用这个手段骗过生物识别身份验证或令其失效。其后果是,企业可能会因为身份认证和验证解决方案无法分辨被验证者的脸是真人还是深度伪造,而开始质疑它们的可靠性。”
目前,使用人脸生物识别技术的身份认证和验证流程依赖于呈现攻击检测(PAD)评估用户的真实性。Khan表示:“数字注入攻击已经开始利用目前能够通过AI生成的深度伪造,而当前定义和评估PAD机制的标准与测试流程并未涵盖此类攻击。”
Gartner的研究表明,虽绕呈现攻击是最常见的攻击载体,但注入攻击(IAD)在2023年增长了200%。为防范此类攻击,需要结合使用PAD、IAD与图像检测。
通过结合使用IAD与图像检测工具减少深度伪造威胁
为帮助企业防范能够骗过人脸生物识别技术的AI生成深度伪造威胁,首席信息安全官(CISO)与风险管理领导人必须选择能够证明自己具备超越当前标准的能力和计划,并且正在对这些新型攻击进行监视、分类和量化的厂商。
Khan表示:“企业应该与专门投资于使用IAD和图像检测技术减少这种新型深度伪造威胁的厂商合作,开始制定最低的控制标准。”
在制定战略和最低标准后,CISO和风险管理领导人必须添加设备识别、行为分析等额外的风险和识别信号,以便提高检测到身份验证流程受到攻击的几率。
最重要的是,负责身份和访问管理的安全与风险管理领导人应该行动起来,通过选择能够验证真人的技术和落实防止账户接管的措施来降低AI深度伪造攻击所带来的风险。
好文章,需要你的鼓励
在“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场以“AIGC创作新范式——双脑智能时代:心智驱动的生产力变革”为主题的分论坛,成为现场最具张力的对话空间。
人民大学团队开发了Search-o1框架,让AI在推理时能像侦探一样边查资料边思考。系统通过检测不确定性词汇自动触发搜索,并用知识精炼模块从海量资料中提取关键信息无缝融入推理过程。在博士级科学问题测试中,该系统整体准确率达63.6%,在物理和生物领域甚至超越人类专家水平,为AI推理能力带来突破性提升。
Linux Mint团队计划加快发布周期,在未来几个月推出两个新版本。LMDE 7代号"Gigi"基于Debian 13开发,将包含libAdapta库以支持Gtk4应用的主题功能。新版本将停止提供32位版本支持。同时Cinnamon桌面的Wayland支持持续改进,在菜单、状态小程序和键盘输入处理方面表现更佳,有望成为完整支持Wayland的重要桌面环境之一。
Anthropic研究团队开发的REINFORCE++算法通过采用全局优势标准化解决了AI训练中的"过度拟合"问题。该算法摒弃了传统PPO方法中昂贵的价值网络组件,用统一评价标准替代针对单个问题的局部基准,有效避免了"奖励破解"现象。实验显示,REINFORCE++在处理新问题时表现更稳定,特别是在长文本推理和工具集成场景中展现出优异的泛化能力,为开发更实用可靠的AI系统提供了新思路。