根据Gartner公司的预测,到2026 年,30%的企业将因为人工智能(AI)生成的人脸生物识别深度伪造攻击而认为此类身份认证和验证解决方案不再能够起到可靠的作用。
Gartner研究副总裁Akif Khan表示:“过去十年在AI领域出现的几个拐点使创建合成图像成为了可能。这些人工生成的真实人脸图像被称为深度伪造,恶意行为者可利用这个手段骗过生物识别身份验证或令其失效。其后果是,企业可能会因为身份认证和验证解决方案无法分辨被验证者的脸是真人还是深度伪造,而开始质疑它们的可靠性。”
目前,使用人脸生物识别技术的身份认证和验证流程依赖于呈现攻击检测(PAD)评估用户的真实性。Khan表示:“数字注入攻击已经开始利用目前能够通过AI生成的深度伪造,而当前定义和评估PAD机制的标准与测试流程并未涵盖此类攻击。”
Gartner的研究表明,虽绕呈现攻击是最常见的攻击载体,但注入攻击(IAD)在2023年增长了200%。为防范此类攻击,需要结合使用PAD、IAD与图像检测。
通过结合使用IAD与图像检测工具减少深度伪造威胁
为帮助企业防范能够骗过人脸生物识别技术的AI生成深度伪造威胁,首席信息安全官(CISO)与风险管理领导人必须选择能够证明自己具备超越当前标准的能力和计划,并且正在对这些新型攻击进行监视、分类和量化的厂商。
Khan表示:“企业应该与专门投资于使用IAD和图像检测技术减少这种新型深度伪造威胁的厂商合作,开始制定最低的控制标准。”
在制定战略和最低标准后,CISO和风险管理领导人必须添加设备识别、行为分析等额外的风险和识别信号,以便提高检测到身份验证流程受到攻击的几率。
最重要的是,负责身份和访问管理的安全与风险管理领导人应该行动起来,通过选择能够验证真人的技术和落实防止账户接管的措施来降低AI深度伪造攻击所带来的风险。
好文章,需要你的鼓励
谷歌地图将集成Gemini人工智能技术,旨在将其升级为一个"全知型副驾驶"助手。这一整合将大幅提升地图服务的智能化水平,为用户提供更加个性化和全面的导航体验。通过AI技术的加持,谷歌地图有望在路线规划、地点推荐和实时信息服务等方面实现重大突破。
Feedzai团队首次系统评估了AI模型理解散点图的能力,创建了包含18,000张图表的大规模数据集。测试十个先进AI模型发现,在简单计数任务中部分模型准确率超90%,但精确定位任务表现不佳,准确率多在50%以下。研究还发现图表设计对AI性能有轻微影响,为AI辅助数据分析提供了重要参考。
微软研究人员发布新的仿真环境来测试AI智能体,研究显示当前智能体模型容易受到操纵。该名为"Magentic Marketplace"的合成平台让客户智能体与商家智能体进行交互实验。测试包括GPT-4o、GPT-5和Gemini-2.5-Flash等模型,发现智能体在面临过多选择时效率下降,且在协作方面表现不佳。研究揭示了AI智能体在无监督环境下的性能问题。
KAIST研究团队开发出MG-Select系统,首次让视觉语言机器人具备"货比三家"的决策能力。该系统通过生成多个行动候选方案并利用内部评估机制选择最优解,无需额外外部验证系统。在真实世界测试中,机器人精确操作成功率提升28%-35%,某些任务改进达168%,为机器人在医疗、制造等高精度应用领域的发展奠定重要基础。