根据Gartner公司的预测,到2026 年,30%的企业将因为人工智能(AI)生成的人脸生物识别深度伪造攻击而认为此类身份认证和验证解决方案不再能够起到可靠的作用。
Gartner研究副总裁Akif Khan表示:“过去十年在AI领域出现的几个拐点使创建合成图像成为了可能。这些人工生成的真实人脸图像被称为深度伪造,恶意行为者可利用这个手段骗过生物识别身份验证或令其失效。其后果是,企业可能会因为身份认证和验证解决方案无法分辨被验证者的脸是真人还是深度伪造,而开始质疑它们的可靠性。”
目前,使用人脸生物识别技术的身份认证和验证流程依赖于呈现攻击检测(PAD)评估用户的真实性。Khan表示:“数字注入攻击已经开始利用目前能够通过AI生成的深度伪造,而当前定义和评估PAD机制的标准与测试流程并未涵盖此类攻击。”
Gartner的研究表明,虽绕呈现攻击是最常见的攻击载体,但注入攻击(IAD)在2023年增长了200%。为防范此类攻击,需要结合使用PAD、IAD与图像检测。
通过结合使用IAD与图像检测工具减少深度伪造威胁
为帮助企业防范能够骗过人脸生物识别技术的AI生成深度伪造威胁,首席信息安全官(CISO)与风险管理领导人必须选择能够证明自己具备超越当前标准的能力和计划,并且正在对这些新型攻击进行监视、分类和量化的厂商。
Khan表示:“企业应该与专门投资于使用IAD和图像检测技术减少这种新型深度伪造威胁的厂商合作,开始制定最低的控制标准。”
在制定战略和最低标准后,CISO和风险管理领导人必须添加设备识别、行为分析等额外的风险和识别信号,以便提高检测到身份验证流程受到攻击的几率。
最重要的是,负责身份和访问管理的安全与风险管理领导人应该行动起来,通过选择能够验证真人的技术和落实防止账户接管的措施来降低AI深度伪造攻击所带来的风险。
好文章,需要你的鼓励
Nvidia宣布将在美国量产AI超级计算机,并与TSMC、Amkor、Wistron、SPIL及Foxconn合作,打造一套从黑岩芯片封装到AI服务器制造的完整生态体系,助力满足日益增长的AI算力需求。
自2024年6月起,Windows 及 Mac 版 OneDrive 共享文件夹显示为网页快捷方式,导致无法离线同步。虽然微软确认问题源于后台迁移,并积极调查,但至今未有永久修复,令用户长期受困。
OpenAI 推出了 GPT-4.1 系列,专注提升编程效率、扩展长文本处理能力与指令执行准确性,同时大幅降低成本,为企业和开发者提供更灵活的 AI 工具。
Nvidia 宣布计划在未来四年内打造并销售约5000亿美元美国本土 AI 超级计算设备,涵盖最新 Blackwell 加速器生产及美国制造基地建设,以满足日益激增的 AI 芯片需求。