过去八年间,数据中台及其“统一数据、统一服务、统一身份(One data, one service, one ID)”理念的广泛采用,推动了中心化数据平台和职责的普及。2023年Gartner中国CIO调研显示,80%的中国受访者依赖中心化IT部门来提供IT架构能力、数据、网络安全标准和政策。
然而,中心化IT放大了两个问题:IT无法快速展示数据平台投资的业务价值,IT对高速变化的业务需求的响应较为缓慢、被动。关于是否采用数据中台/数据网格(Data Mesh)的许多争论,实际上都指向一个更为根本的问题:企业的数据分析平台和职责,适合怎样的中心化/去中心化程度。
中国企业机构在数据驱动转型中很难兼顾的两个需求,是数据和分析(D&A)的过程敏捷性和成果可靠性。为此,中国D&A领导者应采用混合式分析平台及其配套计划,成功实现由数据驱动的机构转型。
根据企业机构需求确定中心化程度
Gartner定义了数据和分析旅程的三个阶段:后企业数据仓库(EDW)阶段、逻辑数据仓库(LDW)阶段和数据编织阶段(见图1)。
图1:从企业数仓向逻辑数仓和数据编织的演变
与北美和欧洲相比,亚太和中国由于存在更大的行业差距、地域差距和其他影响因素,企业机构的数据分析成熟度差异更大。除数据分析成熟度之外,企业业务组合的多元化程度、行业竞争激烈程度等很多因素也影响着数据和分析职责的中心化程度。
D&A领导者应全面评估企业机构的数据分析成熟度和相关其他因素,确定最佳适用原则以及优先度最高的数据分析任务。
运用Gartner双模概念进化数据分析平台
除了涉及混合数据分析原则外,另一个关键而困难的任务是在细粒度层面上实现业务线和IT之间各项技术权责的最佳平衡。“业务部门对数据治理项目的参与度有限”和“分析交付成果等待时间过长、业务满意度低”等负面评价,是平衡失调的典型迹象。
IT拥有的企业数据仓库/湖和业务线拥有的数据集市/沙箱,并不互相排斥。两类平台有各自适用的数据分析用例,可通过Gartner双模概念进行区分。
双模IT旨在为两种IT工作负载实施不同的交付策略:
在数据和分析领域,模式1用例优先考虑数据质量、数据安全和数据可复用性,而不是敏捷性。这些用例应在中心化数据分析平台上交付,遵循严格的数据治理规则以及由中心化IT部门主导的详细测试流程。
模式2用例具有探索性和时效性,其洞察提供时效性优先于数据治理标准。应用/结果可在原型开发环境中交付,使用户能在有限的IT参与度下灵活完成探索和调查。根据数据敏感度和隐私级别,部分新的源数据可绕过数据仓库/数据湖,直接采集到目标应用或数据集市中。
持续调整数据分析角色和职责分配
随着技术架构的发展,不同数据分析角色的责任也应不断变化,以适应各类用例的不同价值偏好。在复杂的用例中,数据工程、数据治理、报表/应用交付等端到端任务通常由不同的部门完成。2023年Gartner中国CIO调研显示,对于“制定企业数字变革愿景时面临的主要困难”这一问题,得票最高的四项有三项与跨部门协调有关,这反映了IT和业务部门之间的责任不匹配。
原则上,与数据基础设施关联较为紧密的任务,如数据获取和元数据变更协调,应由IT集中管理。与洞察消费者关联较为紧密的任务,如BI报表交付和自助服务分析,则应更多地由业务端参与或由业务领导者负责。
用例责任分配不当,会造成预期价值偏好与现实情况不匹配,进而导致业务价值稀释。D&A领导者应不断调整责任归属,使之符合企业机构的数据分析成熟度、数据分析平台发展进度以及新的数据分析用例模式。
好文章,需要你的鼓励
OpenAI 的 ChatGPT 爬虫存在安全漏洞,可被利用对任意网站发起分布式拒绝服务攻击。攻击者只需向 ChatGPT API 发送一个包含大量重复 URL 的请求,就能触发爬虫对目标网站进行大量访问。此外,该漏洞还可能被用于绕过限制,让爬虫回答查询。这些问题凸显了 AI 系统在安全性方面的潜在风险。
三星即将发布的Galaxy S25 Ultra旗舰手机将带来多项升级,尤其是相机方面。据泄露信息显示,新机将支持高分辨率视频拍摄、超广角微距模式、AI音频擦除等功能,并集成Google Gemini AI助手。这些升级将大幅提升用户体验,令人期待。
本周科技圈风云激荡:TikTok 面临美国最高法院裁决,或将被迫停运;Meta 在美国终止事实核查,引发争议;ChatGPT 推出全新任务功能,为用户提供智能日程管理;Beat Saber 在 Quest 平台销量突破千万,AI 电影制作技术展现惊人潜力。
AI正重塑人类生活的方方面面,从商业到国防再到社会政策。AI计算能力与全球影响力息息相关。各国和企业纷纷投资巨额资金建设数据中心,以增强AI实力。预计到2030年AI市场规模将达1.81万亿美元,掌握最佳数据和计算平台的国家将占据优势地位。AI计算力的竞争已成为21世纪全球力量的决定性较量。