过去八年间,数据中台及其“统一数据、统一服务、统一身份(One data, one service, one ID)”理念的广泛采用,推动了中心化数据平台和职责的普及。2023年Gartner中国CIO调研显示,80%的中国受访者依赖中心化IT部门来提供IT架构能力、数据、网络安全标准和政策。
然而,中心化IT放大了两个问题:IT无法快速展示数据平台投资的业务价值,IT对高速变化的业务需求的响应较为缓慢、被动。关于是否采用数据中台/数据网格(Data Mesh)的许多争论,实际上都指向一个更为根本的问题:企业的数据分析平台和职责,适合怎样的中心化/去中心化程度。
中国企业机构在数据驱动转型中很难兼顾的两个需求,是数据和分析(D&A)的过程敏捷性和成果可靠性。为此,中国D&A领导者应采用混合式分析平台及其配套计划,成功实现由数据驱动的机构转型。
根据企业机构需求确定中心化程度
Gartner定义了数据和分析旅程的三个阶段:后企业数据仓库(EDW)阶段、逻辑数据仓库(LDW)阶段和数据编织阶段(见图1)。
图1:从企业数仓向逻辑数仓和数据编织的演变
与北美和欧洲相比,亚太和中国由于存在更大的行业差距、地域差距和其他影响因素,企业机构的数据分析成熟度差异更大。除数据分析成熟度之外,企业业务组合的多元化程度、行业竞争激烈程度等很多因素也影响着数据和分析职责的中心化程度。
D&A领导者应全面评估企业机构的数据分析成熟度和相关其他因素,确定最佳适用原则以及优先度最高的数据分析任务。
运用Gartner双模概念进化数据分析平台
除了涉及混合数据分析原则外,另一个关键而困难的任务是在细粒度层面上实现业务线和IT之间各项技术权责的最佳平衡。“业务部门对数据治理项目的参与度有限”和“分析交付成果等待时间过长、业务满意度低”等负面评价,是平衡失调的典型迹象。
IT拥有的企业数据仓库/湖和业务线拥有的数据集市/沙箱,并不互相排斥。两类平台有各自适用的数据分析用例,可通过Gartner双模概念进行区分。
双模IT旨在为两种IT工作负载实施不同的交付策略:
在数据和分析领域,模式1用例优先考虑数据质量、数据安全和数据可复用性,而不是敏捷性。这些用例应在中心化数据分析平台上交付,遵循严格的数据治理规则以及由中心化IT部门主导的详细测试流程。
模式2用例具有探索性和时效性,其洞察提供时效性优先于数据治理标准。应用/结果可在原型开发环境中交付,使用户能在有限的IT参与度下灵活完成探索和调查。根据数据敏感度和隐私级别,部分新的源数据可绕过数据仓库/数据湖,直接采集到目标应用或数据集市中。
持续调整数据分析角色和职责分配
随着技术架构的发展,不同数据分析角色的责任也应不断变化,以适应各类用例的不同价值偏好。在复杂的用例中,数据工程、数据治理、报表/应用交付等端到端任务通常由不同的部门完成。2023年Gartner中国CIO调研显示,对于“制定企业数字变革愿景时面临的主要困难”这一问题,得票最高的四项有三项与跨部门协调有关,这反映了IT和业务部门之间的责任不匹配。
原则上,与数据基础设施关联较为紧密的任务,如数据获取和元数据变更协调,应由IT集中管理。与洞察消费者关联较为紧密的任务,如BI报表交付和自助服务分析,则应更多地由业务端参与或由业务领导者负责。
用例责任分配不当,会造成预期价值偏好与现实情况不匹配,进而导致业务价值稀释。D&A领导者应不断调整责任归属,使之符合企业机构的数据分析成熟度、数据分析平台发展进度以及新的数据分析用例模式。
好文章,需要你的鼓励
UniR(Universal Reasoner)是一种创新的推理增强方法,可为冻结的大语言模型提供即插即用的推理能力。由韩国科学技术院研究团队开发,该方法将推理能力分解为独立的轻量级模块,无需改变主模型结构。UniR的核心优势在于高效训练(仅更新小型推理模块)、出色的模型间迁移能力(小模型可指导大模型)以及模块组合能力(多个专用模块可通过logits相加组合使用)。在数学推理和翻译测试中,UniR显著超越现有微调方法,展示了轻量级模块如何有效增强大语言模型的推理能力。
Nebius团队开发了SWE-rebench,一个自动化管道用于从GitHub收集软件工程任务并进行去污染评估。该系统解决了两大挑战:高质量训练数据稀缺和评估基准容易被污染。通过四阶段处理(初步收集、自动安装配置、执行验证和质量评估),SWE-rebench构建了包含超过21,000个Python交互式任务的数据集,并提供持续更新的评估基准。研究发现部分语言模型在传统基准上的表现可能被污染效应夸大,而DeepSeek模型在开源模型中表现最为稳健。
这项研究提出了JQL(发音为"Jackal"),一种通过多语言方法提升大型语言模型预训练数据质量的创新系统。研究团队从拉马尔研究所等机构通过四阶段方法解决了多语言数据筛选的难题:先由人类评估内容教育价值创建基准数据,然后评估大型语言模型作为"评判者"的能力,接着将这些能力提炼到轻量级评估器中,最后应用于大规模数据筛选。实验表明,JQL在35种语言上显著优于现有方法,甚至能泛化到未见过的语言如阿拉伯语和中文,为多语言AI发展提供了高效可靠的数据筛选方案。
浙江大学和西湖大学研究团队开发的Styl3R实现了艺术风格化3D重建的重大突破,能在不到一秒内从少量未标定照片和任意风格图像创建具有多视角一致性的3D艺术场景。通过创新的双分支网络架构将结构建模与外观着色分离,系统不仅保持了原始场景结构,还准确捕捉了参考风格特征。与现有方法相比,Styl3R在处理速度和视觉质量上均显著领先,为创意内容制作开辟了全新可能。