云战略对云计算在企业机构中的作用进行了高度概括。根据Gartner的研究,业务和IT领导者在制定云战略时一直在重复十个常见的错误。
Gartner研究副总裁Marco Meinardi表示:“良好的云战略应简明扼要且易于使用,以10至20页的演示文稿就可表达清楚。另外,业务战略应成为制定云战略的基础并为云战略实施者提供指导。云战略必须与其他战略相互配合,而不是去试图取而代之。”
Gartner的分析师们在2022年Gartner IT基础设施、运营和云战略大会上讨论了如何启用和运用云计算并展示云计算的价值。业务和IT领导者应通力协作制定云战略,并在此过程中避免以下十个错误:
一、认为云战略是一项(纯)IT战略
云计算不仅仅涉及到技术。IT部门以外的员工同样掌握着推动云战略成功所需的重要技能和知识。Meinardi表示:“ 业务和IT部门领导者不应制定以IT为中心的战略,然后将这个战略‘推销’给企业的其他部门。在云战略制定过程中,业务和IT部门应是平等的合作伙伴。”
二、 未制定退出策略
制定云服务退出策略的难度很大,这也是许多领导者未制定退出策略的原因之一。许多企业机构认为不会从云端退回本地,因此无需制定退出策略。但退出策略对于企业机构云战略的成功实施至关重要。Meinardi表示:“这就好比你买了一份保险,但希望自己永远不会用到它。”
三、将云战略与云实施计划合并或混淆
云战略不同于云实施计划,而且云战略必须先行。云战略创建于决策阶段,需由业务和IT领导者确定云计算在企业机构中发挥的作用。接下来才是将云战略付诸实施的云实施计划。
四、认为现在制定云战略为时已晚
任何时候制定云战略都不算晚。Meinardi表示:“如果企业机构在推进云实施计划之前并未制定云战略,会让不了解计划背后关键驱动因素和原则的员工产生抵触,最终将拖累云计算实施的进度,甚至有可能危及整个云项目。”
五、将云战略等同于“一切上云”
许多企业机构误认为,云战略意味着一切都要上云。Meinardi表示:“许多业务和IT领导者认为在制定云战略后,就必须在所有工作中使用云计算,因此不敢制定云战略。业务和IT领导者应保持开放的心态,并且与企业架构师等云技术之外领域的专家合作,以便受益于后者可在云战略过程提供的更广阔视角。”
六、认为“云战略等同于数据中心战略”
许多企业机构将云战略与数据中心战略混为一谈。在将这两者分开的同时,也应保证两者的统一,因为这关系到云计算能在企业机构中发挥的作用。Meinardi表示:“决定云战略的是每一项具体的工作负载,而不是数据中心。”
七、认为高管的命令就是战略本身
因为首席执行官、首席信息官或业务部门负责人认为云计算可以节省成本而采用云计算,是企业机构常犯的另一个常见错误。Gartner分析师建议将高管的命令视为其对制定云战略的支持,而不是云战略本身。云战略还应该保持与业务的联系,确保企业机构了解迁移工作负载的原因和目的。
八、认为云战略就是“选定厂商”
企业机构可能会慢慢开始使用多种不同的云服务。由于云服务的使用可能会变得越来越广泛和多样化,业务和IT领导者应该考虑各种类型的场景、云服务、厂商和非云环境,制定出一项全面的云战略。
九、将云战略制定工作外包
外包听起来很吸引人,但云战略过于重要,企业机构不应将战略制定工作外包出去。Gartner分析师建议业务和IT领导者使用第三方,甚至使用云服务提供商来实施云战略,以便企业机构利用经济实惠的方式获得必要的云技术。
十、认为“云先行”就是云战略的全部
“云先行”是指将公有云默认为构建或放置新资产的首选地点。Meinardi表示:“但云先行并不意味着只能使用云技术。业务和IT领导者如果采用云先行原则,那么除默认选项以外,在制定云战略时还应考虑到不在云端开发应用的例外情况。”
好文章,需要你的鼓励
DeepResearchGym是一个创新的开源评估框架,专为深度研究系统设计,旨在解决当前依赖商业搜索API带来的透明度和可重复性挑战。该系统由卡内基梅隆大学研究团队开发,结合了基于ClueWeb22和FineWeb大型网络语料库的可重复搜索API与严格的评估协议。实验表明,使用DeepResearchGym的系统性能与使用商业API相当,且在评估指标间保持一致性。人类评估进一步证实了自动评估协议与人类偏好的一致性,验证了该框架评估深度研究系统的有效性。
这项研究介绍了FinTagging,首个面向大型语言模型的全面财务信息提取与结构化基准测试。不同于传统方法,它将XBRL标记分解为数值识别和概念链接两个子任务,能同时处理文本和表格数据。在零样本测试中,DeepSeek-V3和GPT-4o表现最佳,但在细粒度概念对齐方面仍面临挑战,揭示了当前大语言模型在自动化XBRL标记领域的局限性,为金融AI发展提供了新方向。
这项研究介绍了SweEval,一个新型基准测试,用于评估大型语言模型在企业环境中处理脏话的能力。研究团队从Oracle AI等多家机构的专家创建了一个包含八种语言的测试集,模拟不同语调和上下文的真实场景。实验结果显示,LLM在英语中较少使用脏话,但在印地语等低资源语言中更易受影响。研究还发现较大模型通常表现更好,且多语言模型如Llama系列在处理不当提示方面优于其他模型。这项工作对企业采用AI技术时的安全考量提供了重要参考。
这项研究提出了"VeriFree"——一种不需要验证器的方法,可以增强大型语言模型(LLM)的通用推理能力。传统方法如DeepSeek-R1-Zero需要验证答案正确性,限制了其在数学和编程以外领域的应用。VeriFree巧妙地计算正确答案在模型生成的推理过程后出现的概率,作为评估和训练信号。实验表明,这种方法不仅能匹配甚至超越基于验证器的方法,还大幅降低了计算资源需求,同时消除了"奖励黑客"问题。这一突破将有助于开发出在化学、医疗、法律等广泛领域具有更强推理能力的AI系统。