云战略对云计算在企业机构中的作用进行了高度概括。根据Gartner的研究,业务和IT领导者在制定云战略时一直在重复十个常见的错误。
Gartner研究副总裁Marco Meinardi表示:“良好的云战略应简明扼要且易于使用,以10至20页的演示文稿就可表达清楚。另外,业务战略应成为制定云战略的基础并为云战略实施者提供指导。云战略必须与其他战略相互配合,而不是去试图取而代之。”
Gartner的分析师们在2022年Gartner IT基础设施、运营和云战略大会上讨论了如何启用和运用云计算并展示云计算的价值。业务和IT领导者应通力协作制定云战略,并在此过程中避免以下十个错误:
一、认为云战略是一项(纯)IT战略
云计算不仅仅涉及到技术。IT部门以外的员工同样掌握着推动云战略成功所需的重要技能和知识。Meinardi表示:“ 业务和IT部门领导者不应制定以IT为中心的战略,然后将这个战略‘推销’给企业的其他部门。在云战略制定过程中,业务和IT部门应是平等的合作伙伴。”
二、 未制定退出策略
制定云服务退出策略的难度很大,这也是许多领导者未制定退出策略的原因之一。许多企业机构认为不会从云端退回本地,因此无需制定退出策略。但退出策略对于企业机构云战略的成功实施至关重要。Meinardi表示:“这就好比你买了一份保险,但希望自己永远不会用到它。”
三、将云战略与云实施计划合并或混淆
云战略不同于云实施计划,而且云战略必须先行。云战略创建于决策阶段,需由业务和IT领导者确定云计算在企业机构中发挥的作用。接下来才是将云战略付诸实施的云实施计划。
四、认为现在制定云战略为时已晚
任何时候制定云战略都不算晚。Meinardi表示:“如果企业机构在推进云实施计划之前并未制定云战略,会让不了解计划背后关键驱动因素和原则的员工产生抵触,最终将拖累云计算实施的进度,甚至有可能危及整个云项目。”
五、将云战略等同于“一切上云”
许多企业机构误认为,云战略意味着一切都要上云。Meinardi表示:“许多业务和IT领导者认为在制定云战略后,就必须在所有工作中使用云计算,因此不敢制定云战略。业务和IT领导者应保持开放的心态,并且与企业架构师等云技术之外领域的专家合作,以便受益于后者可在云战略过程提供的更广阔视角。”
六、认为“云战略等同于数据中心战略”
许多企业机构将云战略与数据中心战略混为一谈。在将这两者分开的同时,也应保证两者的统一,因为这关系到云计算能在企业机构中发挥的作用。Meinardi表示:“决定云战略的是每一项具体的工作负载,而不是数据中心。”
七、认为高管的命令就是战略本身
因为首席执行官、首席信息官或业务部门负责人认为云计算可以节省成本而采用云计算,是企业机构常犯的另一个常见错误。Gartner分析师建议将高管的命令视为其对制定云战略的支持,而不是云战略本身。云战略还应该保持与业务的联系,确保企业机构了解迁移工作负载的原因和目的。
八、认为云战略就是“选定厂商”
企业机构可能会慢慢开始使用多种不同的云服务。由于云服务的使用可能会变得越来越广泛和多样化,业务和IT领导者应该考虑各种类型的场景、云服务、厂商和非云环境,制定出一项全面的云战略。
九、将云战略制定工作外包
外包听起来很吸引人,但云战略过于重要,企业机构不应将战略制定工作外包出去。Gartner分析师建议业务和IT领导者使用第三方,甚至使用云服务提供商来实施云战略,以便企业机构利用经济实惠的方式获得必要的云技术。
十、认为“云先行”就是云战略的全部
“云先行”是指将公有云默认为构建或放置新资产的首选地点。Meinardi表示:“但云先行并不意味着只能使用云技术。业务和IT领导者如果采用云先行原则,那么除默认选项以外,在制定云战略时还应考虑到不在云端开发应用的例外情况。”
好文章,需要你的鼓励
Coursera在2025年连接大会上宣布多项AI功能更新。10月将推出角色扮演功能,通过AI人物帮助学生练习面试技巧并获得实时反馈。新增AI评分系统可即时批改代码、论文和视频作业。同时引入完整性检查和监考系统,通过锁定浏览器和真实性验证打击作弊行为,据称可减少95%的不当行为。此外,AI课程构建器将扩展至所有合作伙伴,帮助教育者快速设计课程。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
英国政府研究显示,神经多样性员工从AI聊天机器人中获得的收益远超普通同事。在Microsoft 365 Copilot试点中,神经多样性员工满意度达90%置信水平,推荐度达95%置信水平,均显著高于其他用户。患有ADHD和阅读障碍的员工表示AI工具为他们提供了前所未有的工作支持,特别是在报告撰写方面。研究表明,AI工具正在填补传统无障碍技术未能解决的职场差距,为残障人士提供了隐形的工作辅助。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。