美国劳动力市场在2022年继续重新校准。一项对2300多名高级管理人员的调查发现,65%的人希望在今年上半年增加新的长期职位。另有33%的人正在争相填补空缺,目前全美有超过1080万个职位空缺。作为一家工作在包容性就业前沿的咨询公司,我们在与客户的接触中清楚地认识到一件事。传统的招聘做法不是满足劳动力需求的可行手段。公司必须使其方法现代化以保持竞争力。这意味着拥抱基于技能的招聘。
基于技能的招聘强调候选人的技术技能和核心能力,而不是学位或证书,作为工作成功的最决定性因素。这种做法要求招聘团队定义一个角色所需的和首选的技能,并客观地评估这些技能,以此来减少招聘过程中的偏见。
领先的公司正越来越多地转向基于技能的招聘,包括许多参与OneTen、商业圆桌会议的多种途径倡议、马克尔基金会的Rework America联盟等。
但这一运动并非没有错误信息。下面我们讨论一些关于采用基于技能的方法的最大误区--以及你如何解决这些误区以推动你的公司和其他公司的文化转变。
基于技能招聘与应届生公平竞争
以技能为基础的招聘并不是要把大学毕业生排除在考虑范围之外或降低入职门槛。它是关于阐明学位旨在作为代理的具体技能。通过这种方式,学位持有者和通过其他方式获得技能的候选人都可以被考虑担任该职位。这有助于使所有人的经济机会民主化,并扩大公司可以获得的人才库。
学位通胀--以前不需要这种证书的职位对四年制学位的需求--助长了声望经济,使雇主付出了代价。在这种模式下,许多曾经向上流动的工作,除了那些能够负担得起日益增长的高等教育费用的人之外,已经变得不可企及。这已经不成比例地排除了低收入社区的人才,特别是有色人种。基于技能的招聘提供了一个切实可行的方法来解决这种不平等,并恢复66%没有学士学位的美国人的候选资格,包括超过75%的黑人和超过80%的拉美人。
基于技能招聘效率更高
采取基于技能的方法可以使候选人的筛选和聘用更加有效。基于技能的招聘对未来表现的预测性比基于教育的招聘高5倍,比基于工作经验的招聘高2.5倍。此外,许多雇主报告说,没有学位的员工同样具有生产力,甚至在某些情况下,比大学毕业生的生产力更高。
基于技能的招聘的其他优势包括缩短招聘时间,提高员工参与度,以及降低流失率。
基于技能招聘打破地理限制
从历史上看,招聘团队在招聘工作中采取了超本地的视角。随着远程工作的兴起,雇主可以发起更广泛的候选人搜索,并找到符合其市场技能需求的人。
在一个大的范围内,这可能看起来像与资源不足地区的劳动力发展组织建立伙伴关系,以建立熟练的不同候选人的管道来填补远程角色。通过这些伙伴关系,公司可以同时推动业务成果和经济公平。
虽然设计和启动以技能为基础的招聘需要时间,并且需要有意识地学习和解除学习,但你的公司、员工和社区将最终受益。现在对基于技能的招聘进行投资,将使企业为技能驱动的未来工作做好准备,并创造一个所有美国人都能有意义地参与这一未来的经济。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。