根据Gartner的预测,到2025年,将有一半的云数据中心将部署具有人工智能(AI)和机器学习(ML)功能的先进机器人,这将使运营效率提高30%。
Gartner公司研究副总裁Sid Nag表示:“随着数据中心的服务器数量和存储量不断增长,能够管理它们的工作者人数日益捉襟见肘。如果企业不采取任何措施弥补这些缺口,则会产生很大的风险。
“随着企业机构将更多不同类型的工作负载迁移到云并且云已成为边缘和5G等附加技术的组合使用平台,数据中心的运营必定会变得日益复杂。”
机器人最适合数据中心繁琐、重复的工作
数据中心的大部分工作都是乏味、复杂和重复的工作,例如合理进行整体容量规划、正确分配虚拟机和容器资源或确保资源高效使用等, 以避免企业出现“云上资源大量浪费”。
Nag表示:“这些都是机器人擅长的领域。数据中心是最适合将机器人与人工智能组合的领域,这两项技术的组合将创造出一个更安全、准确、高效并且几乎无需人为干预的环境。”
在未来五年,受机器人影响最大的四个数据中心自动化领域是:
1、服务器的升级和维护:工业机器人可以比人类更快、更高效地报废和销毁淘汰相关设备。经常进行大规模升级的公司尤其如此,例如各类云服务提供商。
2、监控:机器人传感器探头提供更细致的服务器机架温度数据,而不需要安装任何入侵性物理硬件。远程监控机器人还可以通过采集声音和图像等其他数据来检测任何异常情况。
3、数据中心安全:任何数据中心公司的首要任务是维持一个具有数字和物理安全性的数据中心设施。机器人能够通过一系列不同的功能提供物理安全层,包括通过热传感器检测人类温度或在停车场中进行车牌识别。
4、云运营中的人工智能/机器学习:现代化人工智能和机器学习技术能够配合机器人对数据中心的IT流程进行监控和管理。该技术的用户,如网站可靠性工程师等,能够通过自然语言与指定的平台进行互动和交流。这些平台能够通过从过去的场景中学习经验教训来提高在未来场景中的效率。
Nag表示:“虽然机器人已被充分应用于汽车和制造业等行业,但在数据中心中的应用机会却被忽略。IT领导人可以引导云数据中心运营和流程的智能自动化,为他们的企业创造关键的差异化优势,例如增加正常运行时间和满足其云产品和服务的SLA等,并通过使用机器人将这些化为现实。”
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。