根据Gartner的预测,到2025年,将有一半的云数据中心将部署具有人工智能(AI)和机器学习(ML)功能的先进机器人,这将使运营效率提高30%。
Gartner公司研究副总裁Sid Nag表示:“随着数据中心的服务器数量和存储量不断增长,能够管理它们的工作者人数日益捉襟见肘。如果企业不采取任何措施弥补这些缺口,则会产生很大的风险。
“随着企业机构将更多不同类型的工作负载迁移到云并且云已成为边缘和5G等附加技术的组合使用平台,数据中心的运营必定会变得日益复杂。”
机器人最适合数据中心繁琐、重复的工作
数据中心的大部分工作都是乏味、复杂和重复的工作,例如合理进行整体容量规划、正确分配虚拟机和容器资源或确保资源高效使用等, 以避免企业出现“云上资源大量浪费”。
Nag表示:“这些都是机器人擅长的领域。数据中心是最适合将机器人与人工智能组合的领域,这两项技术的组合将创造出一个更安全、准确、高效并且几乎无需人为干预的环境。”
在未来五年,受机器人影响最大的四个数据中心自动化领域是:
1、服务器的升级和维护:工业机器人可以比人类更快、更高效地报废和销毁淘汰相关设备。经常进行大规模升级的公司尤其如此,例如各类云服务提供商。
2、监控:机器人传感器探头提供更细致的服务器机架温度数据,而不需要安装任何入侵性物理硬件。远程监控机器人还可以通过采集声音和图像等其他数据来检测任何异常情况。
3、数据中心安全:任何数据中心公司的首要任务是维持一个具有数字和物理安全性的数据中心设施。机器人能够通过一系列不同的功能提供物理安全层,包括通过热传感器检测人类温度或在停车场中进行车牌识别。
4、云运营中的人工智能/机器学习:现代化人工智能和机器学习技术能够配合机器人对数据中心的IT流程进行监控和管理。该技术的用户,如网站可靠性工程师等,能够通过自然语言与指定的平台进行互动和交流。这些平台能够通过从过去的场景中学习经验教训来提高在未来场景中的效率。
Nag表示:“虽然机器人已被充分应用于汽车和制造业等行业,但在数据中心中的应用机会却被忽略。IT领导人可以引导云数据中心运营和流程的智能自动化,为他们的企业创造关键的差异化优势,例如增加正常运行时间和满足其云产品和服务的SLA等,并通过使用机器人将这些化为现实。”
好文章,需要你的鼓励
Lumen Technologies对美国网络的数据中心和云连接进行重大升级,在16个高连接城市的70多个第三方数据中心提供高达400Gbps以太网和IP服务。该光纤网络支持客户按需开通服务,几分钟内完成带宽配置,最高可扩展至400Gbps且按使用量付费。升级后的网络能够轻松连接数据中心和云接入点,扩展企业应用,并应对AI和数据密集型需求波动。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
RtBrick研究警告,运营商面临AI和流媒体服务带宽需求"压倒性"风险。调查显示87%运营商预期客户将要求更高宽带速度,但81%承认现有架构无法应对下一波AI和流媒体流量。84%反映客户期望已超越网络能力。尽管91%愿意投资分解式网络,95%计划五年内部署,但仅2%正在实施。主要障碍包括领导层缺乏决策支持、运营转型复杂性和专业技能短缺。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。