根据Gartner的预测,到2025年,将有一半的云数据中心将部署具有人工智能(AI)和机器学习(ML)功能的先进机器人,这将使运营效率提高30%。
Gartner公司研究副总裁Sid Nag表示:“随着数据中心的服务器数量和存储量不断增长,能够管理它们的工作者人数日益捉襟见肘。如果企业不采取任何措施弥补这些缺口,则会产生很大的风险。
“随着企业机构将更多不同类型的工作负载迁移到云并且云已成为边缘和5G等附加技术的组合使用平台,数据中心的运营必定会变得日益复杂。”
机器人最适合数据中心繁琐、重复的工作
数据中心的大部分工作都是乏味、复杂和重复的工作,例如合理进行整体容量规划、正确分配虚拟机和容器资源或确保资源高效使用等, 以避免企业出现“云上资源大量浪费”。
Nag表示:“这些都是机器人擅长的领域。数据中心是最适合将机器人与人工智能组合的领域,这两项技术的组合将创造出一个更安全、准确、高效并且几乎无需人为干预的环境。”
在未来五年,受机器人影响最大的四个数据中心自动化领域是:
1、服务器的升级和维护:工业机器人可以比人类更快、更高效地报废和销毁淘汰相关设备。经常进行大规模升级的公司尤其如此,例如各类云服务提供商。
2、监控:机器人传感器探头提供更细致的服务器机架温度数据,而不需要安装任何入侵性物理硬件。远程监控机器人还可以通过采集声音和图像等其他数据来检测任何异常情况。
3、数据中心安全:任何数据中心公司的首要任务是维持一个具有数字和物理安全性的数据中心设施。机器人能够通过一系列不同的功能提供物理安全层,包括通过热传感器检测人类温度或在停车场中进行车牌识别。
4、云运营中的人工智能/机器学习:现代化人工智能和机器学习技术能够配合机器人对数据中心的IT流程进行监控和管理。该技术的用户,如网站可靠性工程师等,能够通过自然语言与指定的平台进行互动和交流。这些平台能够通过从过去的场景中学习经验教训来提高在未来场景中的效率。
Nag表示:“虽然机器人已被充分应用于汽车和制造业等行业,但在数据中心中的应用机会却被忽略。IT领导人可以引导云数据中心运营和流程的智能自动化,为他们的企业创造关键的差异化优势,例如增加正常运行时间和满足其云产品和服务的SLA等,并通过使用机器人将这些化为现实。”
好文章,需要你的鼓励
这项来自新加坡国立大学等机构的研究引入了REASONMAP,一个用于评估多模态大语言模型细粒度视觉理解能力的基准测试。研究团队使用来自13个国家30个城市的高分辨率交通地图,构建了1,008个问答对,设计了两级评估框架测量答案的正确性和质量。对15个流行模型的评估揭示了一个意外发现:开源领域的基础模型表现优于推理型模型,而闭源模型则相反。研究还表明,当视觉输入被遮盖时,模型性能普遍下降,证明真正的细粒度视觉推理任务仍需要有效整合多模态信息。
Nvidia公布2026财年一季度业绩,营收441亿美元,同比增长69%;新AI超算与显卡产品陆续亮相,尽管出口管控对H20业务造成影响,但整体AI市场前景依然乐观。
Cerebras WSE 芯片拥有 40 亿晶体管,推理速度达到 NVIDIA 集群的约 2.5 倍,刷新了全球 AI 推理速度记录,为复杂 AI 代理应用提供高性能计算支持。
这项研究提出了"B-score",一种新指标用于检测大语言模型中的偏见。研究人员发现,当模型能看到自己之前对同一问题的回答时(多轮对话),它能够减少偏见并给出更平衡的答案。B-score计算单轮与多轮对话中答案概率的差异,无需外部标注即可识别有偏见的回答。实验证明,将B-score用于回答验证可显著提高准确率,在标准基准测试上平均提升2.9个百分点。这一发现不仅提供了实用工具,还表明大语言模型具有自我纠正能力。